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Water temperature is a fundamental property of river habitat and often a key aspect of river resource
management, but measurements to characterize thermal regimes are not available for most streams
and rivers. As such, we developed an artificial neural network (ANN) ensemble model to predict mean
daily water temperature in 197,402 individual stream reaches during the warm season (May–October)
throughout the native range of brook trout Salvelinus fontinalis in the eastern U.S. We compared four
models with different groups of predictors to determine how well water temperature could be predicted
by climatic, landform, and land cover attributes, and used the median prediction from an ensemble of 100
ANNs as our final prediction for each model. The final model included air temperature, landform attri-
butes and forested land cover and predicted mean daily water temperatures with moderate accuracy
as determined by root mean squared error (RMSE) at 886 training sites with data from 1980 to 2009
(RMSE = 1.91 �C). Based on validation at 96 sites (RMSE = 1.82) and separately for data from 2010
(RMSE = 1.93), a year with relatively warmer conditions, the model was able to generalize to new stream
reaches and years. The most important predictors were mean daily air temperature, prior 7 day mean air
temperature, and network catchment area according to sensitivity analyses. Forest land cover at both
riparian and catchment extents had relatively weak but clear negative effects. Predicted daily water tem-
perature averaged for the month of July matched expected spatial trends with cooler temperatures in
headwaters and at higher elevations and latitudes. Our ANN ensemble is unique in predicting daily tem-
peratures throughout a large region, while other regional efforts have predicted at relatively coarse time
steps. The model may prove a useful tool for predicting water temperatures in sampled and unsampled
rivers under current conditions and future projections of climate and land use changes, thereby providing
information that is valuable to management of river ecosystems and biota such as brook trout.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Water temperature is a fundamental property of river habitat
that shapes biological communities and determines ecosystem ser-
vices. Water temperature can limit the distribution of species
through physiological constraints and thus is an important factor
in structuring aquatic assemblages (Caissie, 2006; Magnuson
et al., 1979). River water temperature also places constraints on
river metabolism and ecosystem services that depend upon energy
transfers (Demars et al., 2011). Human activities that alter rivers
directly (e.g., dams; reviewed in Olden and Naiman, 2010) or indi-
rectly through changes to the landscape (e.g., land use; reviewed in
Poole and Berman, 2001) can alter water temperatures. Global
climate change is also expected to result in warmer river water
temperatures (e.g., Mohseni et al., 1999; Nelson and Palmer,
2007; van Vliet et al., 2013) primarily as a result of increased air
temperatures, and reduced summer flows may further exacerbate
water temperature increases (Isaak et al., 2010; van Vliet et al.,
2013). These changes are likely to affect riverine biota and may
act independently or in conjunction with other abiotic or biotic fac-
tors to render river habitat unsuitable for some species (Ficke et al.,
2007; Rahel and Olden, 2008). For example, stream warming due
to climate change is predicted to have negative effects on cold-
water fish species, such as Pacific salmon (Oncorhynchus spp.;
Ruesch et al., 2012), but may also result in the upstream expansion
of an introduced predator (smallmouth bass Micropterus dolomieu;
Lawrence et al., 2012). Thus, the combined effects of physiological
stress and expanding ranges of introduced predators could interact
to have large negative effects on native coldwater fish populations.
Because of its importance to biota and susceptibility to human
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activities and climate change, river water temperature and antici-
pated changes resulting from climate and land use changes are of
great interest for resource management and biodiversity
conservation.

Although technological advances have made monitoring river
water temperature comparatively feasible and inexpensive in
recent years (Webb et al., 2008), it is still logistically infeasible to
measure, and difficult to obtain existing data, for a significant por-
tion of river reaches across large basins or regions due to limited
fiscal resources for monitoring and a lack of coordination among
various research programs (Isaak, 2011). As a result, models pre-
dicting river water temperature characteristics for unsampled time
periods, in unsampled rivers or under alternative management or
environmental scenarios have become common in recent years
(e.g., Hill et al., 2013; Isaak et al., 2010; Mohseni et al., 1998;
Nelson and Palmer, 2007; Wehrly et al., 2009). For example, mod-
els are useful for making predictions of water temperature under
future climate (Isaak et al., 2010; Mohseni et al., 1999), alternative
land use scenarios (Hill et al., 2013; Nelson and Palmer, 2007;
Sugimoto et al., 1997), or various water release scenarios from
impoundments (Olden and Naiman, 2010; Wright et al., 2009).
Models are also useful for understanding the processes that control
river water temperature (e.g., Johnson, 2004; Story et al., 2003).
Models predicting river water temperature range from determinis-
tic models that require detailed meteorological and hydrological
data used to solve heat budget equations (e.g., Johnson, 2004;
Story et al., 2003) to empirical models with varying degrees of spa-
tial complexity (e.g., Ruesch et al., 2012) that rely upon relation-
ships between water temperature observations and relatively
easy to collect climatic and landscape variables (e.g., Chenard
and Caissie, 2008; Hill et al., 2013; Isaak et al., 2010; Mohseni
et al., 1998). Although deterministic models can perform well
and are physically based, the detailed data on river-specific energy
transfers that are required to develop these models makes trans-
ferability to other rivers difficult. By contrast, empirical models
are often more easily transferable and thus more useful for predict-
ing river water temperatures at unmonitored locations throughout
large watersheds or regions to support local and transboundary
management efforts (Caissie, 2006).

Hourly or daily variation in water temperature can be impor-
tant for stream ecosystem functioning, and some models have pre-
dicted daily water temperature with moderate accuracy in
individual streams using only air temperature (e.g., Caissie et al.,
2001). However, because water temperature variability generally
increases with the number of streams, empirical models for pre-
dicting in multiple streams and across regions usually predict at
weekly, monthly or seasonal time steps to achieve reasonable
accuracy (Caissie, 2006). The loss of temporal variation in predic-
tions is undesirable because daily predictions could provide more
information and can be summarized to yield weekly, monthly or
seasonal metrics as needed. Prediction in geographically diverse
basins and over large spatial extents is also improved by including
landform, geological, and stream attributes that are directly or
indirectly related to water temperature as predictors (e.g., Hill
et al., 2013; Isaak et al., 2010; Wehrly et al., 2009). There are a
growing number of empirical modeling techniques that allow for
multiple predictors and have been used for predicting water tem-
perature (e.g., regression, stochastic models with time series
decomposition, geospatial models, machine learning). Artificial
neural networks (ANNs) are a particularly promising machine
learning method because they are able to model nonlinear
relationships, handle interactions among predictors, and often
have high predictive power (Lek and Guégan, 1999; Olden et al.,
2008). ANNs have been used widely and often outperformed other
methods for predicting streamflow (e.g., Besaw et al., 2010; Chen
et al., 2013; Huo et al., 2012), dissolved oxygen (e.g.,
Antanasijević et al., 2013; Wen et al., 2013), fish species distribu-
tions (Olden and Jackson, 2002) and richness (Chang et al., 2013),
and water temperature (e.g., Chenard and Caissie, 2008; Risley
et al., 2003; Westenbroek et al., 2010).

Although predicting river water temperature is of importance
for the management and conservation of many aquatic species
(Domisch et al., 2011; Xenopoulos et al., 2005), it is of particular
importance for the conservation of cold-water salmonids
(Almodóvar et al., 2012; Jones et al., 2006; Isaak et al., 2010;
McKenna et al., 2010; Ruesch et al., 2012,), including brook trout
Salvelinus fontinalis. Brook trout is a species of management concern
throughout much of its native range in the eastern U.S., and the
Eastern Brook Trout Joint Venture (EBTJV, http://easternbrooktrout.
org/) was formed to promote regional, transboundary management
and conservation. Brook trout are limited physiologically to
coldwater (mean July water temperature <�22 �C) streams, rivers
and lakes and are sensitive to habitat and biotic disturbances
(MacCrimmon and Campbell, 1969). An EBTJV assessment con-
cluded that brook trout populations were extirpated or reduced
(>50% of previously suitable habitat lost) in >71% of subwatersheds,
and these losses were attributed to human activities, which include
historical forestry practices, habitat alterations, nonnative species
introductions and recent land use changes (Hudy et al., 2008).
Future water temperature increases as a result of global climate
warming are expected to result in further losses of brook trout hab-
itat throughout their native range in eastern North America (Clark
et al., 2001; Flebbe et al., 2006; Meisner, 1990). Even where temper-
atures rise but remain suitable, brook trout growth could be
reduced unless food availability and consumption increase with
temperature (Ries and Perry, 1995). Past predictions of brook trout
range shifts in the eastern U.S. due to climate change were made by
identifying thermally suitable habitat based on surrogates of river
water temperature (e.g., elevation, groundwater temperature as
determined by mean annual air temperature), and overlaying pro-
jected air temperature changes to determine potential habitat
losses (Flebbe et al., 2006; Meisner, 1990). Combining predicted
river water temperature with thermal limits represents a more
direct route for characterizing current thermally suitable habitat
and future changes due to climate change.

To assist in the management of rivers and brook trout in the east-
ern U.S., we developed an ensemble model of 100 ANNs to predict
mean daily river water temperature for the majority of streams
throughout the brook trout’s native range in the eastern U.S. We first
compared four models of increasing complexity to determine how
well daily water temperatures could be predicted by the following
sets of predictors: (1) air temperature only, (2) air temperature
and landform attributes, (3) air temperature, landform attributes
and forested land cover, and (4) air temperature, landform
attributes, and forest, agricultural and developed land covers. We
then select a final model and demonstrate its utility by mapping pre-
dicted water temperatures averaged for the month of July across the
1980–2010 modeling period. Our ensemble approach proves useful
for understanding the importance of predictor variables and we are
not aware of other models described in the peer-reviewed literature
that predict daily water temperatures in individual stream reaches
throughout a similarly large region.
2. Study area

The study region included the native range of brook trout in the
eastern U.S. as defined by the EBTJV, and represents approximately
30% of the worldwide native range of brook trout and 70% of its
range in the U.S. (Fig. 1; Hudy et al., 2008). We modified the EBTJV
region slightly to align with the boundaries of local catchments
from the National Hydrography Dataset Plus Version 1.0
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(NHDPlusV1; USEPA and USGS, 2005). The 197,402 NHDPlusV1
stream reaches that formed a topologically connected river net-
work (i.e., canals, pipelines and other non-river reaches were not
included) with all predictors of water temperature available was
the base layer of the Geographic Information System (GIS) environ-
ment upon which our temperature model was built. The region
reflects the distribution of brook trout, which are limited to higher
elevations (>200 m, Flebbe 2006) in the southern portion of the
region but are found at all elevations at higher latitudes, corre-
sponding to suitably cold water temperatures. The predominant
land cover in the region is second-growth forest, but several urban
centers support a large human population, agricultural land use is
widespread in lower elevations, and forest management is com-
mon throughout much of the range.

3. Methods

3.1. Water temperature data

We compiled water temperature data from state agency per-
sonnel, watershed organizations, authors of published studies,
Fig. 1. Study region showing the location of stream reaches with water temperature o
elevation (m), and the inset map shows the location of the study region relative to the
and publicly available data from the USGS National Water Informa-
tion System (NWIS; http://waterdata.usgs.gov/nwis). One-time
‘snapshot’ temperature recordings were not used because continu-
ous (e.g., hourly) measurements were needed to calculate mean
daily river water temperatures. To include only sites located on
NHDPlusV1 stream reaches, reduce the effects of dams on water
temperature observations, and remove likely measurement errors,
we screened water temperature data as follows. First, we assigned
all water temperature sampling sites to the nearest NHDPlusV1
stream reach, and removed 67 sites that were not within 250 m
of any stream reach. We used 250 m because coordinate accuracy
was unknown and some coordinates likely originated from topo-
graphic maps with relatively poor accuracy, but most sites (85%)
were within 50 m of a stream reach (mean = 30.9 m). Nevertheless,
some sampling sites were located near confluences and could be
attributed to the wrong stream reach using this criterion, which
would associate the wrong landscape attributes with water tem-
perature observations and affect the model. We would have ideally
verified that sites were correctly attributed to stream reaches by
comparing stream names, but this was not possible because 41%
(80,932) of NHDPlusV1 stream reaches did not have names. Since
bservations used in training, validation and 2010 datasets. The background shows
continental U.S.

http://waterdata.usgs.gov/nwis
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we were unable to match names, we fit a model excluding sites
that were within 50 m of a confluence to determine if including
sites that were most likely to have been attributed to the wrong
stream reach (i.e., within 50 m of other stream reaches) negatively
affected model performance. However, model accuracy and mod-
eled relationships were nearly identical to the model including
all sites (J.T. Deweber, unpublished data), suggesting that sites near
confluences were most likely attributed to the correct stream each
and did not affect the model. Thus, we linked water temperature
sites to the nearest stream within 250 m, regardless of the proxim-
ity of confluences or other streams. We averaged water tempera-
ture in rare cases (6.1% of stream reaches) when two
observations were available for the same stream reach and date.
With the exception of data from the West Virginia Department of
Natural Resources (WVDNR), we removed all sites where the near-
est upstream dam (as determined by the National Inventory of
Dams; USACE, 2005) was >100 ft in height or within 5 km. We
chose these cutoffs because very large dams (i.e., >100 ft in height)
can influence river water temperatures far downstream
(Lehmkuhl, 1972; Lowney, 2000) and even relatively small dams
can alter temperatures for short distances downstream (i.e.,
<5 km; Lessard and Hayes, 2003). We acquired data from the
WVDNR after beginning model development and chose to use a
more conservative criterion by removing all sites with a dam
upstream regardless of size or distance because the other criteria
would have involved significant resources to correct hydrologic
errors in the NHDplusV1 network in West Virginia.

We selected all data from the screened sites collected after 1980
during the May to October period when water temperatures likely
reach their maxima and are limiting for brook trout and other
stenothermic biota. Daily water temperature observations were
removed if any individual observation >35 �C or <0 �C was reported
during the day or if the daily range (maximum minus minimum)
was <0 �C or >30 �C. A few of the data sources provided only mean
daily temperatures and we assumed that these had been previ-
ously screened for such errors. We then removed mean daily
observations that exceeded 3 standard deviations of the annual
mean temperature at a site because such extreme values were
potentially air temperature measurements when loggers were
exposed to the air due to reduced stream flows. Lastly, we removed
a small number (212) of mean daily water temperature observa-
tions from 7 stream reaches during model development that were
obvious errors. All included sites were required to have P30 mean
daily records during the month of July because this is a critical
period for brook trout due to high water temperatures.

3.2. Climatic and landscape predictors

We downloaded daily, empirical air temperature records for the
time period 1980–2010 from the U.S. Historical Climatology
Network from the National Climate Data Center (http://
www.ncdc.noaa.gov/) for all sites that were within the study
region plus a 10 km buffer to reduce artificial boundary effects.
There were 1086 sites that recorded air temperature within the
study region, but few sites recorded air temperature for all days
during the 31 year period. To ensure that all stream reaches had
records for all days during the study period, we selected the near-
est 10 climate stations and calculated mean air temperature (from
the current day). Because recent air temperature is likely to be
important for determining water temperature, we also calculated
prior 7 day mean air temperature – the moving average of air tem-
perature from the previous 7 days inclusive of the current day. The
average distance separation between stream reaches and the 10
nearest climate sites ranged from 12.0 to 90.1 km, with a mean
of 30.7 km; the furthest distance separation between a stream
reach and a climate station was 121.5 km. Although there could
be substantial differences in observed air temperatures and eleva-
tions among the 10 nearest climate sites, including 10 sites was
necessary because of gaps in air temperature records. In fact, a
few stream reaches did not have available air temperature data
for all days even with the inclusion of 10 air temperature sites.
However, because increasing the number of sites would also
increase distances between stream reaches and climate stations,
we chose not to include the 961 (<0.4%) daily water temperature
observations for which air temperature data was not available.

We compiled data for landform and land cover attributes that
we expected to be important predictors of water temperature. All
attributes except riparian forest were used in a national assess-
ment of fish habitat condition and are described in Esselman
et al. (2011). We calculated riparian forest as the % cover of forest
within a 30 m buffer on each side of the NHDplusV1 stream
reaches (60 m total width). Although elevation is closely related
to water temperature, we did not include it in our models because
it is indirectly related to water temperature primarily through
effects on climate, and its inclusion could underestimate the effects
of air temperature, especially under warming scenarios (Stanton
et al., 2012). All physiographic attributes were summarized within
the local (i.e., the portion of the catchment directly adjacent to
each stream reach) and network (i.e., all areas upstream including
the local catchment) catchments of each stream reach, which gave
a total of 17 potential predictors. We refer to attributes as local or
network depending upon the scale of measurement. To select a
final set of predictors with minimal collinearity, we selected the
attribute that was more strongly correlated with water tempera-
ture when two or more were correlated (|r| > 0.5). We used a differ-
ent approach for selecting among highly correlated land cover
types because we were specifically interested in modeling relation-
ships between water temperature and each land cover type, espe-
cially local riparian forest cover, as several studies have shown the
importance of shade from riparian vegetation on nearby tempera-
tures (Johnson, 2004; Jones et al., 2006; Rutherford et al., 2004).
Therefore, we selected a set of moderately uncorrelated (|r| < 0.6)
land cover predictors that included at least one measure of riparian
forest cover as well as forest, agricultural and developed land cover
within either the local or network catchment. We recognized that
the 2001 National Land Cover Dataset (NLCD) was unlikely to ade-
quately reflect land cover during the 1980–2010 study period.
However, we compared and found no discernible differences in
model performance or relationships between models trained using
data from 1980 to 2010 and models trained with data from only
1999 to 2003, which is centered on the year of land cover collec-
tion (J.T. Deweber, unpublished data). Therefore, we included
2001 NLCD as a metric of natural land cover and human activity.
This process resulted in 7 potential landscape predictor variables
(Table 1). Prior to model fitting, land cover variables (proportions)
were logit transformed (0 and 1 were changed to 0.025 and 0.975
prior to transformation, respectively) and network catchment area
was log10 transformed. All predictor variables were then standard-
ized to mean 0 and standard deviation of 1.

3.3. Model comparisons

We compared the following four models of increasing complex-
ity to determine how well water temperature could be predicted
by different sets of predictor variables:

(1) An air temperature model: This model included only mean air
temperature from the current day and prior 7 day mean air
temperature based on the prediction that air temperature
is the best available predictor of predict water temperature
regionally. Air temperature is closely related to climatic fac-
tors that determine water temperature (Caissie, 2006) and

http://www.ncdc.noaa.gov/
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Table 1
Names and sources of all natural and human disturbance landscape attributes that were used in analyses. The land cover code column lists the reference numbers from the source
dataset used to calculate land cover types used in our analyses.

Attribute Resolution Units Source Land cover code

Network area 1:100,000 kmb Calculated using NHDPlusV1a NA
Network mean aspect 30 m Degree National Elevation Datasetb NA
Network mean baseflow index 1:100,000 % Groundwater contribution to baseflow Wolock (2003) NA
Local riparian forest 30 m % Cover NLCD 2001 version 13 41 + 42 + 43
Network forest 30 m % Cover NLCD 2001 version 13 41 + 42 + 43
Network developed land 30 m % Cover NLCD 2001 version 1c 21 + 22 + 23 + 24
Local agriculture 30 m % Cover NLCD 2001 version 1c 81 + 82

a USEPA and USGS (2005).
b Available at <http://ned.usgs.gov/>.
c Homer et al. (2004).
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several models have predicted water temperature based off
of air temperature alone (e.g., Chenard and Caissie, 2008;
Mohseni et al., 1998).

(2) A landform model: This model included landform attributes
(rows 1 – 3 in Table 1) in addition to air temperature predic-
tors because these describe static watershed and stream
characteristics that may affect water temperature and
improve predictions. We selected three landform attributes
that might affect water temperature through effects on river
size and network position (network area), solar radiation
(network mean aspect), or groundwater interactions (net-
work baseflow index).

(3) A forest landscape model: This model included all predictors
of model 2 plus measures of local riparian forest and net-
work forest land cover. Forest land cover in the riparian zone
and network catchment was expected to be related to lower
mean daily water temperatures in the summer through
effects on shading, ground temperature, and exposure to
atmospheric energy transfers (Caissie, 2006).

(4) An anthropogenic landscape model: This model included local
catchment agriculture and network catchment developed
land covers in addition to all predictors in model 3 except
network forest cover, which was not included due to high
correlations with agriculture and developed land covers.
We expected that measures of anthropogenic land cover
may improve predictions as agriculture and developed land
cover have been related to water temperature alterations,
including increased summer temperatures (Hill et al.,
2013; Poole and Berman, 2001).

3.4. Neural networks

Feed forward neural networks are widely used in ecology (e.g.,
Lek and Guégan, 1999; Olden and Jackson, 2002) and have been
used for predicting river water temperatures (e.g., Chenard and
Caissie, 2008; McKenna et al., 2010; Risley et al., 2003;
Westenbroek et al., 2010). We briefly discuss the basics of ANNs
that we used in this study. A single hidden-layer feed forward
ANN (also referred to as a multi-layer perceptron) is a nonlinear
model that consists of input neurons (predictor variables) con-
nected to any number of hidden neurons in a single hidden layer,
which are in turn connected to one output neuron (response vari-
able). ANNs may also include skip-layer connections, which are
direct connections between input neurons and output neurons that
allow for linear relationships between predictors and the response
variable. An ANN with skip-layer connections but no hidden neu-
rons is analogous to a linear model, whereas an increasing number
of hidden neurons allows for increasing nonlinearities in modeled
relationships (Cheng and Titterington, 1994). Our models included
skip-layer connections in addition to hidden neurons because
preliminary comparisons showed that models with skip-layers
achieved better performance with fewer weights (i.e., were more
parsimonious) and models without skip-layer connections tended
to underpredict warmer (>25 �C) water temperatures (J.T. Dewe-
ber, unpublished data). The learning process proceeds by assigning
randomly selected (or pre-assigned) weights to the input-hidden,
hidden-output, and input–output (i.e., skip-layer) connections,
and iteratively adjusting the weights through a learning algorithm
based on the difference between predicted and observed responses
until a convergence criterion is met (Lek and Guégan, 1999).

We developed ANNs using the R package nnet (Venables and
Ripley, 2002) using the conjugant gradient Broyden–Fletcher–
Goldfarb–Shanno (BFGS) learning algorithm, which is recom-
mended because it is more likely to find global optima compared
to gradient descent methods (Dreyfus, 2005). One potential draw-
back of ANNs is that models can become overfit as a result of too
many predictors, weights or training iterations (Dreyfus, 2005). A
second drawback is that identical ANNs fit using the same dataset
but different starting weights can have very different modeled
relationships because they find locally optimal weights in complex
datasets (Hansen and Salamon, 1990). While many studies develop
several ANNs using different starting weights and select the best
model based on model performance, an ensemble can improve pre-
dictions by combining information from multiple models (Hansen
and Salamon, 1990). An ensemble approach can also be used to
better understand the effects of predictor variables and their
relative importance in ANNs analogous to variable importance
measures in random forests (Breiman, 2001). Because our goal
was a model with accurate predictor effects that could generalize
to unsampled rivers in the EBTJV region, we selected an optimal
ANN architecture using cross validation and used an ensemble of
ANNs to make predictions, as described below.

Prior to model development, we withheld two validation sets to
assess model performance in a different, relatively warmer year
and at new sites. The first validation dataset included all data from
2010 to determine model performance under warmer conditions
and at some new streams (133 of the 223 stream reaches with
2010 data did not have data from other years). We chose 2010
because mean July air temperature averaged across all climate sta-
tions in our region was at least 0.3 �C warmer and there were 26
more observations of extremely warm air temperatures (>32 �C)
than any other year except 1999 (Table 2). We did not use 1999
data for validation because available water temperature modeling
data was limited and did not reflect regionally warmer conditions.
Mean July air temperatures were 1.3 �C warmer in the 2010 dataset
than in the training dataset, partially due to regionally warmer
conditions but also because many sites were in the southern por-
tion of the study region (Fig. 1). After removing data for 2010, we
obtained a second validation dataset for determining how well
the model could generalize to new stream reaches across multiple
years by randomly selecting 10% of stream reaches and withhold-
ing all associated data. We refer to these two validation datasets as

http://ned.usgs.gov/


Table 2
Interannual comparison of three air temperature metrics for the 10 years with the
warmest mean July air temperature for the entire region (Regional) or water
temperature modeling dataset (Modeling Dataset). Metrics are sorted in decreasing
order of July air temperature, and the standard deviation is shown in parentheses. July
and Season were calculated as the regional average air temperature in July and
throughout the May–October modeling season, respectively. N > 32 �C was the total
number of mean daily air temperature observations exceeding 32 �C in each year
across all temperature sites. These metrics show that 2010 air temperatures were
warmer than almost all other years, especially for the modeling dataset.

Year July Season N > 32 �C

Regional
1999 23.3 (3.8) 17.9 (5.9) 74
2010 23.3 (3.7) 18.5 (5.9) 71
1988 22.9 (3.9) 17.1 (6.8) 43
2006 22.8 (3.1) 17.3 (6.0) 45
1995 22.7 (3.4) 17.8 (5.6) 27
1994 22.7 (3.0) 17.0 (5.8) 5
2005 22.7 (3.1) 18.1 (6.1) 15
1987 22.6 (3.7) 17.4 (6.2) 20
1993 22.6 (3.7) 17.4 (6.1) 36
2002 22.5 (3.8) 17.8 (6.5) 31
1980–2010 21.8 (3.5) 17.4 (5.8) 535

Modeling dataset
2010 24.1 (3.1) 21.1 (4.7) 12
2008 22.8 (2.5) 19.2 (5.1) 0
2006 22.9 (2.4) 18.1 (5.2) 3
2002 22.8 (4.0) 19.9 (5.7) 17
1988 22.3 (3.6) 15.9 (6.7) 0
1994 22.0 (1.8) 16.9 (5.2) 0
1983 22.0 (2.7) 17.2 (5.8) 0
1999 21.8 (3.2) 17.3 (5.6) 0
2007 21.8 (3.2) 19.5 (4.9) 6
1980 21.8 (3.5) 17.1 (5.9) 0
1980–2010 21.8 (3.2) 18.8 (5.3) 38
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the 2010 dataset and the validation dataset, respectively. The
remaining data were used to select the ANN architecture and to
train the final model. Withholding these two validation datasets
meant that a large amount of data from approximately 30% of
stream reaches could not be used for model training, which could
have negatively affected model performance. To determine if addi-
tional training data might improve or otherwise alter modeled
relationships, we also developed models using a much larger train-
ing dataset and a much smaller validation dataset comprised of
data from 5% of stream reaches. The two different sized training
datasets produced nearly identical models based on performance
and modeled relationships (J.T. Deweber, unpublished data). This
comparison suggested that the modeling approach is fairly invari-
ant to the size of dataset used for model training. Thus, in this
paper we present only the results of model development that used
the two validation datasets described above because it provided a
more rigorous validation of model performance under a larger
range of conditions.

We used 10-fold cross validation with 3 repeats via the train
function of the R package caret (Kuhn, 2008) to compare ANN
architectures based on root mean square error (RMSE). The stan-
dard cross validation procedure split data randomly and resulted
in a preliminary model with all predictors that performed excep-
tionally at locations included in the training data (RMSE = 1.26 �C)
but could not generalize well to validation sites (RMSE = 2.68; J.T.
Deweber, unpublished data). To ensure that we had a more accu-
rate measure of generalizability to new sites, we employed an
approach that we refer to as site-based cross validation: 90% of
sites and respective data were randomly selected for training while
the remaining 10% of sites and respective data were used to calcu-
late generalization error in each iteration. Site-based cross valida-
tion ensured that the reported cross validation error was
representative of prediction accuracy at new sites. For each of
the four models described in Section 3.3, we used site-based cross
validation to select the simplest ANN architecture with the best
performance from a range of model architectures by varying the
weight decay coefficient, number of hidden neurons and the num-
ber of training iterations. The weight decay coefficient penalizes
unnecessarily large weights, which helps avoid overfitting and aids
generalization (Krogh and Hertz, 1992). All four models described
in Section 3.3 had optimal predictive ability with the same archi-
tecture: a decay coefficient of 0.1, 5 hidden neurons plus skip-layer
connections, and 100 training iterations. Finally, because individ-
ual ANNs had different modeled relationships, we trained an
ensemble of 100 ANNs for each model with the selected model
architecture but different random starting weights. We calculated
the median predicted water temperature from the ensemble of
models as our final prediction because it was representative of
most modeled relationships and was not sensitive to outliers.
3.5. Model characteristics and performance

For each model, we examined residual plots to compare predic-
tions and observations, and to check for potential biases in model
performance across the ranges of each predictor. To explore mod-
eled relationships, we performed a sensitivity analysis and calcu-
lated sensitivity weights as a measure of variable importance
using the procedure described by Olden et al. (2004). For the sen-
sitivity analysis, at each of 24 evenly spaced values covering the
range of each predictor variable, we predicted nine values of water
temperature by varying all other predictors concurrently across
nine evenly spaced quantiles from 0.1 to 0.9. We then calculated
the median prediction at each of the 24 values of each predictor.
A sensitivity weight for each predictor was calculated as the range
in these 24 median predicted values, which approximates the max-
imum change in water temperature due to changes in the values of
a predictor. We plotted the median responses for the predictions
from each ANN individually and from the ensemble prediction.
Lastly, for the ensemble predictions we also plotted water temper-
ature responses to each predictor while holding all other variables
at five selected quantiles (0.1, 0.3, 0.5, 0.7, and 0.9) to determine if
the magnitude or direction of responses to a given predictor varied
with the values of other predictors.

We selected a final model from models 1–4 described in
Section 3.3 by comparing performance based on RMSE, but we also
report three additional metrics that provide a more complete over-
view of model performance: RMSE divided by the standard devia-
tion in the observed data (RMSE/SD), the Nash–Sutcliffe efficiency
(NSE), and percent bias. RMSE/SD is a measure of prediction accu-
racy relative to the variability in the observed dataset that can use
to compare the performance of different models and datasets (Hill
et al., 2013; Moriasi et al., 2007). NSE is a measure of explained var-
iation ranging from 0 (no variation explained) to 1 (all variation
explained), and percent bias reflects whether a model tends to
over-predict (negative values) or under-predict (positive values),
with 0 representing no overall prediction bias (Moriasi et al.,
2007). Values less than 0.5 for RMSE/SD, greater than 0.75 for
NSE and less than ±10% for percent bias were suggested to repre-
sent very good performance for stream flow, nutrient and sediment
models (Moriasi et al., 2007). To demonstrate the utility of this
model, we summarized daily predictions to mean July water tem-
perature from 1980 to 2010 and mapped these predicted mean July
water temperatures in all 197,402 stream reaches in our study
region. Predictive models in general, and neural network models
in particular, may not perform well when new predictor values
outside of the range of the training data are encountered. Thus,
we also identified stream reaches with landscape predictor values
outside the range of the training data and shaded these portions of
the map to represent a ‘map of ignorance’ to identify portions of
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the study region where model performance may be especially lim-
ited (Rocchini et al., 2011).

4. Results

Of over 1 million records from 2565 sites that we compiled,
269,608 observations of mean daily water temperature from
1080 stream reaches met our criteria for inclusion in the model.
We set aside 26,194 observations from 96 stream reaches for the
validation dataset and 27,126 observations from 223 stream
reaches for the 2010 validation dataset (Fig. 1). The training dataset
included the remaining 216,288 observations from 866 stream
reaches. Stream reaches in the training dataset had network catch-
ment areas ranging from 0.568 to 19,208 km2, and spanned a large
range of other natural and anthropogenic landscape attributes
(Fig. 2). The training, validation and 2010 datasets had similar var-
iation in landscape attributes (Fig. 2). Of the 197,402 stream
reaches in the population, 189,419 (96.0%) had landscape attribute
values that were within the range of those in the training dataset.
Most unrepresented streams had extreme values of network area
(3750 stream reaches) or network mean aspect (3209 stream
reaches), but some streams were not represented by network
mean baseflow index or network forest.

The air temperature model predicted water temperature with
only moderate accuracy (RMSE = 2.50, 2.55 and 2.46 �C for training,
validation, and 2010 datasets, respectively) compared to other
models, and the inclusion of landform predictors, especially net-
work area, reduced RMSE by roughly 0.5 �C (Table 3). The addition
of forested land cover further improved accuracy, but the
Fig. 2. Distributions of landscape predictor variables across the population of stream reac
in the development and assessment of the river water temperature model. The predicto
anthropogenic landscape model performed poorer than the forest
landscape model despite added complexity (Table 3). Further, we
did not consider the anthropogenic landscape model to be suitable
for predictions as the predicted negative effects of agriculture and
developed land covers on water temperature (Fig. 3) were the
opposite of previously published relationships and of the positive
correlations with water temperature in our dataset (the correlation
between water temperature and both local agriculture and net-
work developed land covers was 0.13). We chose the forest land-
scape model as our final model because accuracy was highest
(RSME = 1.91, 1.82, and 1.93 for training, validation, and 2010 data-
sets, respectively; Table 3) and the predicted negative effects of
local riparian forest and network forest matched expectations from
the literature. Relationships between predicted and observed mean
daily water temperatures for the forest ensemble model were gen-
erally unbiased (i.e., followed a one-to-one relationship), but slight
tendencies to over predict low temperatures and under predict
high temperatures were evident (Fig. 4). For training and validation
datasets combined, the average accuracy of daily predictions was
very good (RMSE < 1.0 �C) at 22.5% of stream reaches and good
(RMSE < 2.0 �C) at 74.3% of stream reaches, but was poor
(RMSE > 4 �C) at a small number of stream reaches (2.3%). The
model also performed reasonably well based on maximum devia-
tion, as all predictions were within 2.0, 3.0, and 4.0 �C of observed
water temperature at 39.3%, 59.4% and 75.5% of stream reaches.

Although we selected our final model using only RMSE, the
other three performance metrics were also generally optimized
for the forest landscape model (Table 3). NSE suggested that the
forest landscape model explained at least as much variation for
hes (Pop), training (Train), validation (Val), and 2010 validation (2010) datasets used
rs and their sources are listed in Table 1.



Table 3
Performance metrics and the number of weights (N weights) for 4 different river water temperature models (see Section 3.4 for model details). The performance metrics are root
mean square error (RMSE, �C), RMSE divided by the observed standard deviation (RMSE/SD), the Nash–Sutcliffe efficiency (NSE), and percent bias (% bias).

Model N weights Subset RMSE RMSE/SD NSE % Bias

Air temperature 23 Training 2.50 0.62 0.62 0.00
Validation 2.55 0.64 0.59 1.16
2010 2.46 0.69 0.53 �1.99

Landform 41 Training 2.00 0.49 0.76 �0.03
Validation 1.83 0.46 0.79 0.71
2010 1.95 0.55 0.70 �1.42

Forest landscape 53 Training 1.91 0.47 0.78 �0.05
Validation 1.82 0.46 0.79 0.26
2010 1.93 0.54 0.71 �1.75

Anthropogenic landscape 65 Training 1.92 0.47 0.78 �0.07
Validation 1.87 0.47 0.78 0.19
2010 1.98 0.55 0.69 �1.74
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Fig. 3. Sensitivity analysis plots showing negative predicted mean daily river water temperature responses for the anthropogenic landscape ANN ensemble to increasing
levels of local agriculture and network developed land covers. Predicted water temperature at each of 24 values of the predictor were calculated as the median of nine
predictions obtained by varying all other predictors concurrently across nine evenly spaced quantiles from 0.1 to 0.9. The grey lines represent the predicted responses for each
of the 100 ANNs in the ensemble, and the blue line represents the median prediction from all of the 100 ANNs and the final ensemble prediction. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

194 J.T. DeWeber, T. Wagner / Journal of Hydrology 517 (2014) 187–200
the training (0.78) and validation (0.79) datasets as other models,
and explained more variation for the 2010 validation dataset
(0.71) than all other models. Percent bias was relatively low for
all models and well below the 10% cutoff for very good model per-
formance suggested for streamflow data by Moriasi et al. (2007).
However, percent bias values between �1.42 and �1.99 showed
that water temperatures were slightly overpredicted on average
for the 2010 validation dataset by all models (Table 3). All models
had poorer performance for the 2010 validation datasets based on
all metrics, but performance was still very good or good according
to the guidelines of Moriasi et al. (2007).

Air temperature from the current day at the nearest 10 climate
stations was the strongest predictor based on sensitivity analyses
(sensitivity weight = 14.4, Table 4), but prior 7 day mean air tem-
perature was also important (sensitivity weight = 10.2, Table 4).
Sensitivity analysis plots revealed a strong linear relationship
between air and water temperature (�0.4 �C water temperature
increase per �C) that was consistent across individual ANNs in
the ensemble (Fig. 5). The effect of prior 7 day air temperature
was similar (�0.4 �C water temperature increase per �C) for air
temperatures below 20 �C, but then gradually decreased to a
�0.2 �C water temperature increase per �C. The effects of landscape
predictors generally varied greatly among individual ANNs, sug-
gesting that effects were less certain compared to air temperature.
Network area was the most important landscape attribute (sensi-
tivity weight = 6.4; Table 4) and had a strong positive effect for
very small watersheds (<1 km2) that decreased until little effect
was present for larger watersheds (>1000 km2; Fig. 6). Ensemble
predictions from the sensitivity analysis increased from �16 �C
for the smallest catchments to approximately 22 �C for the largest.
Network mean aspect had a relatively weak positive effect on
water temperature as it shifted from east (90�) to west (260�),
whereas the effect of network baseflow index was nonlinear and
produced a very small net effect (Fig. 6). Local riparian forest had
a negative effect on water temperature across all values, and was
strongest at extreme low and high values. In contrast, the effect
of network forest was expected to decrease water temperature
overall, but was weakly positive when forest was less than 75%
and then strongly negative for forest cover >80%.

Daily predictions were slightly more accurate when summa-
rized to calculate mean July water temperature (RMSE = 1.76 �C)
compared to daily predictions for the training dataset, but were
slightly lower for the validation dataset (RMSE = 1.89 �C) and
2010 datasets (RMSE = 1.97). Mean July prediction accuracy was
very good (<1.0 �C) at 47.0% and good (<2.0 �C) at 77.8% of all
stream reaches, but was poor (RMSE > 4 �C) at 3.4%. The spatial dis-
tribution of predicted mean July water temperature for 1980–2010
showed an expected transition from coldwater to warmwater
stream reaches along a gradient from high to low elevation and
upstream to downstream within the region (Fig. 7). Fig. 7 also
shows the 7983 unrepresented stream reaches that had values of
one or more landscape characteristics outside the range of the
training data, where predictions may be most uncertain
(Rocchini et al., 2011). Because the spatial detail of predictions



Table 4
Sensitivity weights and the direction of effect on water temperature of each predictor
for the forest landscape ensemble model. The sensitivity weight is an approximation
of the maximum change in water temperature due to a predictor and was calculated
as part of sensitivity analyses described in Section 3.5 of the text.

Predictor Name Sensitivity weight Direction

Mean air temperature 14.4 +
Prior 7 day mean air temperature 10.2 +
Network area 6.4 +
Network forest 2.2 �
Network mean aspect 1.8 +
Network mean baseflow index 1.9 Unclear
Local riparian forest 1.4 �
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Fig. 5. Selected sensitivity analysis plots showing predicted mean daily river water
temperature and prior 7 day mean air temperature. Predicted water temperature at eac
obtained by varying all other predictors concurrently across nine evenly spaced quantiles
ANNs in the ensemble, and the blue line represents the median prediction from all of the
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Predicted and observed mean daily river water temperatures for the
training, validation and 2010 validation datasets. The grey line represents a 1:1 line.
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within a river network is difficult to see at the regional extent, we
also mapped predicted temperatures for a subset of the Penn’s
Creek watershed in central Pennsylvania (Fig. 8).
5. Discussion

Our results demonstrated that an ensemble of ANNs can accu-
rately predict river water temperature at a daily time step within
individual stream reaches throughout a large and geographically
diverse region. Daily predictions have especially great value for
management because they can capture relatively short-term tem-
perature variation, which can drive system dynamics, and also be
summarized to provide accurate metrics of thermal habitat (e.g.,
mean weekly or mean July water temperature). Further, predic-
tions for individual, relatively short (�2 km) small stream reaches
capture high spatial variability and can also be summarized to lar-
ger spatial extents as needed. Most models of water temperature at
a daily temporal resolution have focused on single streams or rel-
atively small basins and have typically achieved accuracies equiv-
alent to 1–2 �C RMSE (Caissie et al., 2001; Chenard and Caissie,
2008; Gardner et al., 2003; Isaak and Hubert, 2001; Marcé and
Armengol, 2008). Within moderate to large basins or regions, tem-
perature modeling efforts have focused on predicting weekly,
monthly, seasonal or annual river water temperature (e.g., Hill
et al., 2013; Isaak et al., 2010; Mohseni et al., 1998; Wehrly
et al., 2009). For example, Hill et al. (2013) used machine learning
to model seasonal and annual water temperatures throughout the
conterminous U.S. with good accuracy (RMSE = 1.2–2.0 �C).

It is difficult to compare our model performance to previous
efforts because models predicting water temperature at daily
0 10 20 30

Prior 7 day air temperature (°C)

temperature responses for the final selected ANN ensemble model to mean air
h of 24 values of the predictor were calculated as the median of nine predictions
from 0.1 to 0.9. The grey lines represent the predicted responses for each of the 100
100 ANNs and the final ensemble prediction. (For interpretation of the references to
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Fig. 6. Selected sensitivity analysis plots show predicted mean daily river water
temperature responses for the final selected ANN ensemble model to network area,
network mean aspect, network mean baseflow index, network forest and local
riparian forest. Note that the vertical axes vary among plots. Predicted water
temperature at each of 24 values of the predictor were calculated as the median of
predictions obtained by varying all other predictors concurrently across nine evenly
space quantiles from 0.1 to 0.9. The grey lines represent the predicted responses for
each of the 100 ANNs in the ensemble, and the blue line represents the median
prediction from all of the ANNs, which was the final ensemble prediction. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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temporal resolution throughout a large basin or study region are
rare in published literature, likely because of limited data availabil-
ity, modeling difficulty, or study objectives that did not require
predicting water temperatures at a high temporal (i.e., daily) reso-
lution. We are aware of a model that was used by Lyons et al.
(2009) to predict and summarize daily water temperatures in
NHDPlus stream reaches of Wisconsin, but this model is only par-
tially described in conference proceedings (Westenbroek et al.,
2010). One exception is a recent model predicting mean daily
water temperatures with moderate accuracy (RMSE = 2.8 �C) for
global rivers (van Vliet et al., 2012), but comparisons are difficult
because predictions were made at a much lower resolution (0.5�
grid cells, �50 km) than our stream reach (�2 km) based predic-
tions. We can more directly compare our model performance to
previous studies by summarizing our predictions to calculate mean
July water temperature, a commonly used metric. For example, our
model had marginally better accuracy for predicting mean July
temperatures than models developed for the Upper Midwest
(RMSE = 2.0–2.3 �C) using four different statistical methods
(Wehrly et al., 2009). Better accuracy of our model may reflect
the superior predictive performance of ANNs, as found by
Chenard and Caissie (2008) for predicting daily temperatures in a
small stream in New Brunswick, Canada. However, such compari-
sons are limited because accuracy measures such as RMSE should
be scaled by observed variation to compare across models and
datasets (Moriasi et al., 2007), but we do not know the variation
in dataset of Wehrly et al. (2009). For this reason, seemingly supe-
rior accuracy of our model compared could be due to a difference
in the observed variability in water temperatures between the
two study regions, which means that we cannot compare perfor-
mance in terms of explained variation. Reporting the observed
standard deviation in future studies would benefit future model
comparisons.

The site-based cross validation procedure was similar to using
cross validation based on environmental gradients to select models
as suggested by Wenger and Olden (2012), except sites were
selected randomly without respect to any environmental gradient.
Using this method effectively limited overfitting and increased
generalizability, as the final model generalized to validation
sites much better (RMSE = 1.82 �C) than a preliminary model
developed based on a strictly random cross validation procedure
(RMSE = 2.69 �C; J.T. Deweber, unpublished data). We also chose
to take the median prediction from an ensemble of 100 ANNs
because individual ANNs varied in their predicted effects and we
wanted robust estimates of predictor effects (e.g., Figs. 5 and 6).
As discussed by Hansen and Salamon (1990), using consensus
based off of multiple ANNs is more likely to be correct because
any single ANN could become fixed on local optima and make
‘wrong decisions’. Although ensembles of neural networks may
not be familiar, this approach is similar to more commonly used
random forests, where predictions from a large number of classifi-
cation and regression trees are combined because of the instability
of any single tree (Breiman, 2001). Most importantly, our ANN
ensemble had good accuracy and limited bias when applied to
two validation datasets, which included a large number of new
stream reaches with different combinations of landscape and land
cover conditions, as well as a relatively warmer year. This suggests
that the model can be used to reasonably predict water tempera-
tures at unsampled stream reaches throughout the region under
present conditions and future scenarios of climate and land use
change. Combining these predictions with additional knowledge
of stream systems may help ensure that such predictions reflect
actual thermal conditions and changes.

Air temperature was the strongest predictor of river water tem-
perature in our model, which was expected since climatic factors
related to air temperature are the primary sources of thermal



Fig. 7. Map of the regional spatial patterns of mean daily water temperatures (�C) predictions summarized as mean July temperature over the 1980–2010 modeling period.
The areas shaded black (No Data) represent stream reaches that have no temperature predictions, while grey areas (Unrepresented) are stream reaches with predicted
temperatures that are considered uncertain because one or more landscape attribute value is outside of the range of those in the training dataset.
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energy transfers in streams (e.g., Johnson, 2004; Story et al., 2003),
and empirical models have often used only air temperature to pre-
dict water temperatures (e.g., Caissie et al., 2001; Mohseni et al.,
1998). Our results also suggest that including prior air temperature
patterns can improve performance in empirical water temperature
models. Similarly, Chenard and Caissie (2008) found that one day
prior air temperature improved predictions of mean and maximum
daily water temperature in a neural network model for a small
stream in New Brunswick. Air temperature had a linear effect
throughout its range and a 1 �C increase resulted in a �0.4 �C water
temperature increase (Fig. 5). The strength of the relationship did
not diminish when air temperature exceeded 20 �C as suggested
by Mohseni et al. (1998), but the dampened effect of higher prior
7 day air temperatures (Fig. 6) likely results in an overall diminish-
ing effect.

Although air temperature was important, our results show that
landform and land cover attributes can greatly improve predic-
tions. The positive effects of watershed area were expected
because river temperature generally increases with river size for
a number of reasons, including reduced groundwater cooling,
increased exposure to atmospheric exchanges as river width
increases, and temperatures reaching equilibrium downstream
(Caissie, 2006). Mean aspect in the network had a positive linear
effect in our study, which is not surprising because the shift from
eastern to western facing catchments likely results in increased
solar radiation, which is a primary energy input for rivers
(Johnson, 2004; Story et al., 2003). Groundwater interactions are
an important determinant of water temperatures (Caissie, 2006;
Poole and Berman, 2001) and can improve performance in regional
models (e.g., Wehrly et al., 2009; Morrill et al., 2005), but detailed
datasets to represent these interactions were lacking in the study
region. We included the baseflow index, an interpolated measure
of groundwater contribution to baseflow estimated at USGS gaged
streams (Wolock, 2003), but the model did not suggest that water
temperatures decrease with increasing values as expected during
the warm season. Its limited performance in the model likely
reflects the limited ability of this metric to account for groundwa-
ter interactions. Other studies in mountainous areas have found



Fig. 8. Map showing detailed spatial patterns of mean daily water temperature (�C) predictions summarized as mean July temperature over the 1980–2010 modeling period
for a portion of Penn’s Creek watershed in central Pennsylvania. The star in the inset map shows the location of Penn’s Creek in the study region.
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that elevation can be an effective predictor of water temperature
(Isaak et al., 2010; Ruesch et al., 2012) and this would most likely
be true in our region as well. However, we did not include
elevation because its presence in the model could reduce air
temperature effects and downplay the impacts of increasing air
temperatures under climate change (Stanton et al., 2012).

We expected positive effects of agricultural and developed land
cover in our model and negative effects of forest land cover
because these relationships have been well documented in the lit-
erature (for reviews see Caissie, 2006; Poole and Berman, 2001).
For example, Hill et al. (2013) showed that mean summer river
water temperatures in rivers with small amounts of agricultural
and urban (medium and high developed) land cover (>1%) were
slightly higher (�0.5–1 �C) than in rivers with essentially no agri-
cultural and urban land cover. In contrast to our expectations,
the model with agricultural and developed land covers predicted
counterintuitive, negative effects and we thus chose the simpler
model with only forest land cover. However, the predicted
decrease in water temperature as network forest cover increased
from 80% to 100% can be interpreted as an increase in water tem-
perature as human land cover increases and was consistent with
previously published reports of water temperature increases due
to forestry activities (e.g., Beschta and Taylor, 1988). The predicted
increases in water temperature as network forest increased from
0% to 60% is not consistent with expected trends and is likely
due to relationships with other landscape attributes that control
water temperature. For example, stream reaches with relatively lit-
tle network forest (<40%) had smaller watersheds (mean network
area = 37.1 km2) than reaches with more forest cover (mean net-
work area = 152.2 km2) in our training dataset, which could lead
to a modeled positive relationship because streams with small
watershed are predicted to be cooler due to the strong effect of
network area. The effect of local riparian forest cover was negative
and suggested that the greatest cooling could be expected as ripar-
ian forests increased from 0% to 10% and from 90% to 100%. Prior
studies have shown warming water temperatures in response to
the full and partial removal of riparian forest vegetation (e.g.,
Rutherford et al., 2004) so it is not surprising that temperatures
are predicted to be cooler for stream reaches with 100% riparian
forest cover.

Our modeling approach predicted daily water temperature as
single events and did not specify spatial or temporal links between
predictions. Since river water temperatures are more likely to be
similar on consecutive days and in connected river reaches, model-
ing spatiotemporal autocorrelation could potentially improve
model performance. A couple of methods that could be used
include recurrent or dynamic ANNs that account for temporal
autocorrelation and have been used to successfully forecast
streamflow (e.g., Besaw et al., 2010; Chen et al., 2013), and spatial
regression models that incorporate downstream connectivity of
river systems and have been used to predict weekly water temper-
atures in relatively large basins (Isaak et al., 2010; Ver Hoef et al.,
2004). Although autocorrelation was not directly modeled in this
study, some degree of realistic spatial and temporal structure
was reflected in model predictions because it was embedded in
predictors.

6. Conclusions

We developed an ensemble of ANNs that predict mean daily
water temperature with good accuracy (RMSE = �1.9 �C) and low
overall bias (percent bias <±2 �C) for two large validation datasets
during the warm season throughout a large and physiographically
diverse study region. This is the first publication that we are aware
of to describe a model predicting daily water temperatures within
individual stream reaches (�2 km in length) throughout a large
region, as most previous regional efforts have focused on weekly,
monthly or seasonal predictions. Our results demonstrate how
combining predictions from an ensemble of ANNs can improve
model accuracy and the estimation of predictor effects. Predictor
effects as revealed by a sensitivity analysis varied widely among
ANNs, and we had more confidence in the relationships between
water temperature and climatic, landform and land cover predic-
tors from the median ensemble prediction than from any single
ANN. Daily water temperature predictions in individual stream
reaches can be used directly or summarized spatially or temporally
to yield water temperature metrics for a number of applications,
including the management and conservation of aquatic organisms,
including mussels, macroinvertebrates and fish species such as
brook trout. For example, thermally suitable habitat under present
and future conditions can be mapped to determine potential hab-
itat for brook trout or other target species. Although our model had
reasonable accuracy and represented most rivers throughout the
region, combining local knowledge with model predictions may
help ensure that management decisions more accurately reflect
actual thermal conditions.
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