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Abstract 

Over the last 200 years, brook trout (Salvelinus fontinalis) have been subjected to 

numerous anthropogenic physical, chemical, and biological perturbations that threaten 

the long term viability of brook trout throughout their historic native range.  The historic 

and current decline in brook trout populations and the threat of further habitat 

degradation have led to a desire to develop a large scale conservation strategy to protect 

and rehabilitate brook trout populations and habitat.  Understanding both the current 

distribution of brook trout and the relationships between the brook trout population status 

and perturbations is essential to developing meaningful conservation strategies and 

tactics.  My study area included the historic native range of brook trout in the eastern 

United States, covering 17 states stretching from Maine to northern Georgia.  I developed 

numerous predictive models using known brook trout subwatershed population status 

(Extirpated/Reduced/Intact) and subwatershed metrics derived from GIS data.  The 

purpose of the models was to predict subwatershed status for the subwatersheds where 

the status was either unknown or only qualitative data were available and to determine 

metric thresholds to aid brook trout conservation efforts.  I compared the correct 

classification rates of multiple and single variable logistic regression, discriminant 

analysis (linear, quadratic, and nearest neighbor), and classification trees.  I chose the 

classification tree as my main model for predicting brook trout subwatershed status.  

Based on known subwatersheds and predictive models my results show that brook trout 

are Intact in 1,612 subwatersheds (32%), Reduced  in 1,938 subwatersheds (39%) and are 

Extirpated from 1,451 subwatersheds (29%) from their potential (historic) range within 

the study area.  Six core subwatershed and subwatershed water corridor metrics 
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(percentage of forested land, combined sulfate and nitrate deposition, percentage of 

mixed forest in the water corridor, percentage of agriculture, road density, and latitude) 

were useful as predictors of brook trout distribution and status.  A total of 94% of the 

Intact populations of brook trout occur in subwatersheds where the percentage of forested 

lands is greater than 68%.  The brook trout subwatershed status distribution and threshold 

metric values can be useful for a risk assessment and for prioritizing conservation efforts.    
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Introduction 
 

Roughly 25 percent of the historic native range of the eastern brook trout 

(Salvelinus fontinalis) is located in the eastern United States.  This range extends from 

the headwater tributaries of the Mississippi River in Minnesota, to the Atlantic coastal 

drainages of the Northeast (Maine to Virginia), and south along the Appalachian 

mountains to the headwaters of the Chattahoochee River in northern Georgia 

(MacCrimmon and Cambell 1969; Benhnke 2002).   

 Over the last 200 years, brook trout have been subjected to numerous 

anthropogenic physical, chemical, and biological perturbations that threaten the long term 

viability of brook trout throughout their historic native range in the eastern United States 

(Marschall and Crowder 1996; Galbreath el al. 2001).  These perturbations have caused 

declines in brook trout populations and brook trout have already been extirpated from 

many areas of this range (MacCrimmon and Cambell, 1969).  These perturbations 

include: sedimentation, acid deposition, increased water temperature, loss of riparian 

vegetation, non-native species, and habitat fragmentation (Brasch et al. 1958; Kelly et al. 

1980; Johnson and Jones 2000; Driscoll et al. 2001; Curry and MacNeill 2004).    

 Although these perturbations obviously affect brook trout in their stream or lake 

habitat, they may stem from sources not directly adjacent to aquatic ecosystems.  Because 

of the downhill flow of water, freshwater species are affected by activities taking place 

anywhere upstream or uphill in the watershed (Master et al. 1998).  These watershed 

activities, or characteristics, include: road density, land use such as agriculture, logging, 

and residential areas, and human population density and growth.  These watershed scale 
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characteristics can directly or indirectly cause or affect the aforementioned list of 

perturbations.   

 According to a recent assessment, these perturbations have caused a decline in 

self-sustaining brook trout populations in 59% of the subwatersheds in the eastern United 

States (Hudy et al. 2006).  The study area for this assessment consisted of approximately 

70% of the United States’ historic native range of brook trout and summarized existing 

brook trout population knowledge to classify the brook trout population status for 6th 

level hydrologic units, or subwatersheds.  Only 5% of the subwatersheds were still intact 

at pre-European settlement levels, 22% of the subwatersheds no longer supported brook 

trout populations, and almost 35% of the subwatersheds did not have enough quantitative 

data available to classify the population status.  This study not only highlighted where 

brook trout populations are in decline, but also indicated areas of population information 

gaps.  Filling in these information gaps would help to give a complete picture of the 

status of brook trout populations.   

 Because of the historic and current decline in brook trout populations and the 

threat of further habitat degradation, many biologists, land managers, outdoor enthusiasts, 

and policy makers are concerned about the future viability of brook trout.  This concern 

has led to a desire to develop a large scale conservation strategy to protect and 

rehabilitate brook trout populations and habitat throughout the historic range in the 

eastern United States.  In June of 2004, over 50 state and federal agencies, 

nongovernmental organizations, and academicians decided to form the Eastern Brook 

Trout Joint Venture (EBTJV).  The purpose of this Joint Venture is to develop 

meaningful strategies and tactics for the conservation of brook trout and to establish 
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multi-organization collaborative efforts to implement and maintain these strategies.  To 

date, there has never been a large scale assessment evaluating the span of conditions of 

brook trout perturbations throughout the eastern United States.     

Understanding the relationship between the brook trout population status and the 

perturbations within watersheds is essential to developing meaningful strategies and 

tactics.  Evaluations of the integrity of native brook trout watersheds over their native 

range are useful to guide decision makers, managers, and publics in setting priorities for 

watershed level restoration, inventory, and monitoring.  Large-scale assessments for 

many species have been useful in identifying and quantifying: problems, information 

gaps, restoration priorities and funding needs (Williams et al. 1993; Davis and Simon 

1995; Frissell and Bayles 1996; Warren et al. 1997; Master el al. 1998, McDougal et al. 

2001).  Watersheds are good units on which to base assessments because they allow for 

the conservation of biodiversity (Moyle and Randall 1998).  Also, management goals that 

ensure natural processes are maintained with little human interference are obtainable at 

the watershed scale (Moyle and Yoshiyama 1994).  Compiling a multiple variable 

measurement, or multi-metric index, for watersheds can assist managers in their 

evaluations of watershed conditions by giving an indicator of overall health when many 

anthropogenic factors may be contributing to a problem and by assisting in identifying 

key limiting factors (Barbour et al. 1999; McCormick et al 2001).  Determining a method 

for conducting a large scale assessment measuring brook trout populations and their 

perturbations and creating a multi-metric index based on these measurements would aid 

in the creation of conservation strategies and tactics.   
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An example of a large scale, multi-metric assessment of an aquatic species that 

addressed information gaps and predicted population abundance is the study conducted 

on bull trout (Salvelinus confluentus) populations in the Northwest (Rieman et al. 1997).  

This study used existing knowledge of the distribution and status of bull trout and its 

association with landscape characteristics to predict the probability of occurrence in 

subwatersheds where the bull trout population status was unknown.  This assessment 

summarized information from biologists to classify bull trout population status within 

subwatersheds for the Columbia River Basin east of the Cascade Mountain crest and the 

portion of the Klamath River basin in Oregon.   They then used associations of the bull 

trout population status with landscape metric values of the subwatersheds to predict the 

probability of occurrence in subwatersheds where the population status was unknown.    

To develop the prediction model Rieman et al. (1997) calculated 28 landscape 

variables with potential influence on aquatic ecosystems using a Geographic Information 

System (GIS).  These variables represented vegetation, climate, geophysical properties, 

land use, and included metrics such as: percent vegetation cover, mean air temperature, 

slope, and road density.  They used existing GIS databases to calculate the landscape 

metrics within the subwatersheds classified by the population status assessment.  They 

then used classification trees, a type of decision tree model, to determine the association 

of the metrics with the bull trout population status.  The classification trees were use to 

predict bull trout presence in subwatersheds classified as unknown and to predict the 

population status of subwatersheds where only the presence of bull trout was known.  

This analysis concluded that bull trout were still widely distributed across its potential 

range, but had suffered strong declines in numbers.   
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Some aspects of this project by Rieman et al. (1997) can be applied to brook trout 

populations in the eastern United States.  The population status of brook trout compiled 

by Hudy et al. (2006) was determined using methods similar to those used by the Rieman 

group.  However, one of the drawbacks to the study assessing bull trout populations was 

that they could not quantitatively measure declines in the population status because they 

did not know how much of the potential range was historically occupied by bull trout.  In 

contrast, the brook trout population status classifications are in relation to the historic 

distribution and distinctions were made between subwatersheds that never contained 

brook trout and subwatersheds where populations had been extirpated.  Additional 

methods used for bull trout could be applied to brook trout subwatersheds to fill in the 

gaps where the population status is unknown.  Like the Rieman project, metrics 

developed from calculating subwatershed landscape and anthropogenic features within 

the brook trout subwatersheds could be used to construct a model to predict population 

status.  This prediction model or models could also be used to determine subwatershed 

landscape thresholds where shifts in the population status occur.  Such models and 

thresholds could provide a valuable tool for the conservation effort to protect and restore 

brook trout populations and habitat.     

The objective of this study is to (1) calculate multi-metric subwatershed 

characteristics for a brook trout risk assessment, (2) develop a model to predict brook 

trout classification status by subwatershed where data are missing, and (3) specify brook 

trout classification thresholds for landscape metrics to aid natural resource managers.   
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Methods 

Study Area 

The study area includes the historic native range of brook trout in the eastern 

United States, covering 17 states stretching from Maine to northern Georgia (Figure 1).  

This area encompasses 25% of the brook trout’s native range and about 70% of the 

historic native range within the United States (MacCrimmon and Cambell 1969).  I chose 

to use 6th level Hydrologic Unit Code (HUC) watersheds, from here on out referred to as 

subwatersheds, (mean size 8,633 ha, SD 7,384) as the analysis resolution for this study.  

The subwatersheds were delineated by the Natural Resource Conservation Service 

(NRCS) and the United States Geological Survey (USGS) (Seaber et al. 1987; McDougal 

et al. 2001; EPA 2002; USGS 2002).  The subwatershed data were obtained and analyzed 

as both ArcGIS polygon shapefiles and coverages.  I chose the subwatershed level 

because 1) it is currently the smallest nationally delineated watershed size available, 2) it 

is a size useful to biologists for developing management plans (Moyle and Yoshiyama 

1994; Master et al. 1998), 3) it is the same resolution used by the Eastern Brook Trout 

Joint Venture (EBTJV) to assess brook trout status, and 4) local populations or discrete 

groups of brook trout are best approximated by subwatersheds (Hudy et al. 2006).   

The NRCS and the USGS are currently delineating standardized 6th level 

watershed coverages for the entire United States (NRCS 2005).  Many of the state 

subwatersheds were drafts and there were no 6th level HUCs available for the state of 

New York.  In New York I used 5th level HUCs, referred to as watersheds, (mean size 

20,476 ha, SD 16,390).  The analysis consisted of a total of 5,287 subwatersheds or 

watersheds (New York only). 
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Metric development 

 I developed a set of candidate metrics comprised of numerous anthropogenic and 

landscape variables having potential influences on brook trout population status and 

distribution.  These metrics were developed and analyzed within a Geographic 

Information System (GIS) using ArcGIS 8.3 (Environmental Systems Research Institute, 

Redlands, California, USA).  I took the least common denominator approach and only 

included variables that were available at the same resolution and had common definitions 

throughout the study area.  This approach allowed for development of metrics that could 

be compared across the study area.  The variables are potential surrogates for 

sedimentation, fragmentation, vegetation, and human land use.  I calculated metrics at the 

subwatershed level and the subwatershed water corridor.  The water corridor was defined 

as 100 meters on both sides of a stream or surrounding a water body that was represented 

by the 1:100,000 scale National Hydrography Dataset (NHD) (USGS 2004).  Metrics 

were calculated either per area or as a percentage of the watershed to account for the 

variation in subwatershed size.  A full list of the candidate metrics is located in Table 3.   

Projection and Datum 

All GIS data were converted into a common projection.  I used an Albers Conical 

Equal Area projection adjusted for the eastern United States (parameters: Standard 

Parallel: 27.283806, 44.08275; Longitude of Central Meridian: -96.613972; Latitude of 

Projection Origin: 35.683278; False Easting: 0.0; False Northing: 0.0).  I used the Albers 

projection because it maintains (does not distort) area, so that one can compare per area 

metrics from Maine to those in Georgia (Lo and Yeung 2002).  I used the North 

American Datum developed in 1983 (NAD83) because it is the most commonly used 
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datum for the United States.  The NAD83 datum uses the 1980 Geodedic Reference 

System (GRS 80) ellipsoid.   

Independent variables 

Dams 

I calculated the number of dams per square kilometer for each subwatershed.  

Dam information and location was obtained from the National Inventory of Dams (NID) 

created and maintained by the United States Army Corps of Engineers (1998) and the 

Federal Emergency Management Agency.  This database includes dams that have a 

height no less than six feet and have a minimum storage capacity of 15 acre feet.  I used 

the 2002 updated dataset which contains 9,728 dams within the study area.     

Roads 

I calculated road density in kilometers of road per square kilometers of land area 

at both the subwatershed and the water corridor levels.  The road dataset used was 

improved Topological Integrated Geographic Encoding and Referencing system (TIGER) 

data enhanced by Navtech (2001).   

I also calculated a roads/streams crossings metric by determining the spatial 

intersections of the Navtech road data and the 1:100,000 National Hydrography Dataset 

(NHD) stream layer (USGS 2004a).  Stream crossings were summarized for each 

subwatershed as number of crossings per stream kilometer.     

Land Use 

Land use information was obtained from the 1992 National Land Cover Data 

(NLCD) dataset developed for the contiguous United States by the USGS (USGS 2004b).  

The 1992 NLCD was completed for the study area in 1998 and is the most current dataset 
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spanning the entire study area.  The NLCD was derived from LANDSAT Thematic 

Mapper imagery augmented by ancillary datasets and consists of 21 thematic classes 

stored as a grid coverage with 30 meter cell resolution (USGS 2004b).  The 21 thematic 

classes closely resemble the Anderson land use/cover classification system (Anderson et 

al. 1976) and are listed in Table 1.  Land use was summarized as the percentage of the 

subwatershed and subwatershed water corridor classified for each individual land cover 

class (Table 1) and the following derived metrics: total human use (sum of : low and high 

intensity residential, quarry/mines, commercial/industrial/transportation, transitional, 

pasture/hay, row crops, fallow, small grains, orchards/vineyards, urban recreation), total 

agriculture (sum of: pasture/hay, row crops, fallow, small grains, orchards/vineyards), 

total forest (sum of: deciduous, evergreen, mixed) and residential use in the water 

corridor (sum of: low and high intensity residential) (Table 3). 

The thematic accuracy of the NLCD was assessed by the USGS as the project 

mapping regions were completed (USGS 2005).  The mapping regions that overlap the 

study area are regions 1-4: New England, New York/New Jersey, the Mid-Atlantic, and 

the Southeast respectively.  They first randomly picked a sample cell.  They then 

determined the probability that the most common land use class within a 3x3 cell block 

centered on the sample cell actually matches a photo-interpreted land cover class of the 

same area.   

The overall regional accuracy probabilities in the study area range from 0.43 to 

0.66 (USGS 2005).  In most cases, errors occur between related classes, for example row 

crops are misclassed as pasture/hay or there is confusion among the three forest classes. 

When aggregated into the broader groups of water, urban, barren land, forest land, 
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shrubland, agriculture land, and wetlands, the overall regional accuracy increases and 

ranges from 0.74 to 0.83. 

Table 1. The 21 National Land Cover Dataset thematic land classes and land class codes 
Code Land Cover Class Code Land Cover Class 

11 Open Water 51 Shrublands 
12 Perennial Ice/Snow 61 Orchards/Vineyards/Other 
21 Low Intensity Residential 71 Grasslands/Herbaceous 
22 High Intensity Residential 81 Pasture/Hay 
23 Commercial/Industrial/Transportation 82 Row Crops 
31 Bare Rock/Sand Clay 83 Small Grains 
32 Quarries/Strip Mines/Gravel Pits 84 Fallow 
33 Transitional 85 Urban/Recreational Grasses 
41 Deciduous Forest 91 Woody Wetlands 
42 Evergreen Forest 92 Emergent Herbaceous Wetlands 
43 Mixed Forest     

 

Human Population 

 I used a grid coverage containing population census data in 1 km cells to calculate 

the population density (number of people per square kilometer) per subwatershed.  The 

population grid coverage was developed from U.S. Census year 2000 county population 

data (U.S. Census Bureau 2002) divided by census blocks.  The census block data were 

used to convert the county total population data into population per 1 square kilometer 

grid cells (Whalen 2004). 

Acid Deposition  

 Acid deposition metrics were derived from the 2004 nitrate (NO3) and sulfate 

(SO4) wet deposition grid data (National Atmospheric Deposition Program 2005).  The 

deposition grids have a 2.5 km cell resolution and contain the spatially interpolated wet 

deposition in kilograms per hectare.  I used the Zonal Statistics function of the ArcGIS 

8.3 Spatial Analyst extension to calculate the mean nitrate and sulfate deposition values 

for each subwatershed.   
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Soil Buffering Capacity 

A measure of soil buffering capacity within the water corridor was determined by 

calculating the percentage of soil with a pH greater than or equal to 5.0.  I used a database 

developed by Penn State, called CONUS-SOIL, which was derived from the national 

NRCS State Soil Geographic Database (STATSGO) dataset.  The CONUS-SOIL dataset 

consists of multiple 1 km resolution coverages of numerous soil characteristics (Earth 

Systems Science Center, 2005).  I derived the soil buffering metric from the pH soil 

coverage.  The pH values represent the top 10 centimeters of soil.   

Elevation  

 The mean, maximum, and minimum elevation in meters for each subwatershed 

was calculated using 30 meter Digital Elevation Models (DEM) developed by the USGS.  

The DEMs were obtained from the National Elevation Dataset (NED) which is a 

seemless elevation dataset spanning the conterminous United States (USGS 1999).   

Latitude and Longitude 

 To develop the latitude and longitude metrics, the subwatershed polygons were 

first converted from the Albers projection into a Geographic, decimal degree, NAD83 

datum.  The latitude and longitude of the centroid of each subwatershed polygon was 

determined using the VBA script provided in the ArcGIS 8.3 help.   

Exotic fish 

 I developed a metric index to measure the presence of exotic fish species within 

the subwatersheds.  I used the professional opinion perturbation values for exotic fish 

species collected from the biologists in the brook trout subwatershed status classification 

process (Hudy et al. 2006).  To create the index I gave each exotic species weighted 
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values based on their perturbation level.  I assigned Level 1 a value of 5, Level 2 a value 

of 3, and Level 3 a value of 1.  I then summed all of the weighted values for each of the 

exotic species in the subwatersheds.   

Dependent variable 

 The dependent variable in this analysis was the brook trout population status 

classifications by subwatershed compiled by Hudy et al. (2006) as part of the EBTJV.  

Subwatershed classification was based on the percentage of habitat in each subwatershed 

still maintaining self-sustaining populations of brook trout (Table 2).  The assessment 

used quantitative and qualitative data from numerous biologists, databases, and other 

sources to make subwatershed classifications that were consistent and comparative 

throughout the study area.  Because of small sample sizes in some of the original 

subwatershed classifications, I used the grouped classifications of Extirpated (n = 1,083), 

Reduced > 50% (n = 1,481), and Intact > 50% (n = 773) for analysis, model 

development, and reporting (Table 2).  From here on out I will refer to these groups as 

Extirpated, Reduced, and Intact.   The classifications of 1)Unknown: No data and 2) 

Present: Qualitative represent subwatersheds where there was not sufficient quantitative 

data to either indicate the presence of self-sustaining brook trout or specify the 

percentage of habitat supporting self-sustaining brook trout within the subwatershed 

(Table 2).  These two classifications represent data gaps and will henceforth be referred 

to as Unknown and Present.   Figure 1 illustrates the distribution of the brook trout 

subwatershed status for the study area.   

 In addition to classifying the subwatershed status of brook trout, Hudy et al. 

(2006) also recorded biologists’ and managers’ opinions of the perturbations to brook 
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trout within each subwatershed.  These opinions helped me develop the list of candidate 

subwatershed metrics and also to create the exotic fish metric.  The perturbations were 

characterized as Level 1: high (life cycle component eliminated), Level 2: medium (life 

cycle component reduced but not eliminated), or Level 3: low (general threat, no 

documented loss or reduction of life cycle). 
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Table 2.  Summary of subwatershed level brook trout population classifications used for 
collection and validation and final collapsed classifications used for analysis and 
reporting. 

Collection and validation classification categories 
Collapsed classifications used for analysis and 

reporting 
Classification 1.0 Extirpated 
Unknown: No data or not enough data to classify 
further 

Subwatersheds where all self-sustaining 
populations no longer exist.  Same as 
Classification 3.0 

Classification 1.1 Predicted Extirpated 
Absent: Unknown history - Brook trout currently 
not in watershed; historic status unknown 

All self-sustaining populations are predicted 
extirpated.  Predicted subwatersheds from 
Classifications 1.0 and 4.0 

Classification 2.0 Reduced > 50% 
Never occurred - Historic self-sustaining 
populations never known to occur 

Between 50% and 99% of the historic brook trout 
habitat no longer supports reproducing brook 
trout populations.  Same as Classification 8.0. 

Classification 3.0 Predicted Reduced > 50% 
Extirpated - All historic self-sustaining populations 
no longer exist 

Between 50% and 99% of the historic brook trout 
habitat is predicted to no longer support 
reproducing brook trout populations.  Predicted 
subwatersheds from Classifications 1.0 and 4.0. 

Classification 4.0 Intact > 50% 
Present: Qualitative - No quantitative data; 
qualitative data show presence 

Subwatersheds with > 50% of historic habitat 
occupied by self-sustaining brook trout.  Formed 
from the collapsing of Classifications 5.0, 6.0, 
and 7.0. 

Classification 5.0 Predicted Intact > 50% 
Present: Intact large - High percentage (>90%) of 
historic habitat occupied by self-sustaining 
populations, populations greater than 5,000 
individuals or 500 adults 

Subwatersheds predicted with > 50% of historic 
habitat occupied by self-sustaining brook trout.  
Predicted subwatersheds from Classifications 1.0 
and 4.0.   

Classification 6.0 Absent: Unknown 
Present: Intact small - High percentage (>90%) of 
historic habitat occupied by self-sustaining 
populations, populations less than 5,000 individuals 
or 500 adults 

Brook trout currently not in watershed; historic 
status unknown.  Same as Classification 1.1 

Classification 7.0  
Present: Reduced - Reduced percentage (50% - 
90%) of historic habitat occupied by self-sustaining 
populations 

 
Classification 8.0  
Present: Greatly reduced - Greatly reduced 
percentage (1%-49%) of historic habitat occupied 
by self-sustaining populations 
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Figure 1.  Distribution of brook trout subwatershed status within the study area.   
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Metric screening 

 The candidate metrics were screened according to similar methods described in 

Hughes et al. (1998) and McCormick et al. (2001) to help reduce the number of metrics, 

remove irrelevant variables, and determine which metrics are most likely to be predictive 

of brook trout populations (Table 3).  Metrics were tested for 1) completeness, 2) range, 

3) redundancy, and 4) responsiveness to the dependent variable.  First, the metrics were 

screened for completeness to assure that measurements could be comparable throughout 

the study area.  Metrics were excluded that did not have data available for the entire study 

area or did not have consistent resolution or definitions.  Second, metrics with a small 

range of values were eliminated because they would not be useful in indicating 

differences in subwatershed characteristics.  Next, when two metrics were highly 

correlated (lrl > 0.8) one metric was removed to eliminate redundancy.  I used 

professional judgment to decide which single metric was retained and chose to keep the 

metric that would be more comprehendible, repeatable, and most useful to land 

managers.  Finally, the responsiveness of the metrics to the brook trout subwatershed 

status classifications was measured using the Wald chi-square and analysis of variance 

tests (Sokal and Rohlf 1995; Hosmer and Lemeshow 2000).  The metric screening 

resulted in a reduction of the original 63 metrics to a core set of six metrics: percentage 

forested lands (TOTAL_FOREST), percentage agriculture lands (PERCENT_AG), 

combined NO3 and SO4 deposition (DEPOSITION), road density (ROAD_DN), 

percentage riparian mixed forested lands in the subwatershed corridor 

(MIXED_FOREST2), and latitude (LATITUDE) (Table 3).   
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Table 3. Descriptions of subwatershed and subwatershed corridor level metrics. 
Screening criteria: X = eliminated for lack of range in variable; Y = eliminated for lack of 
response to categories; R = eliminated for redundancy with core variable; C = core 
variable not eliminated.  

Screening Subwatershed Metric Description 
Y DAMS_SQKM Number of dams per km2

C DEPOSITION  Derived from sum of mean  SO4 and NO3  deposition (kg/ha) 
R NO3_Mean Mean NO3 deposition (kg/ha) 
R SO4_Mean Mean SO4 deposition (kg/ha) 
Y Pop_Density Mean population density (# people/km2) 
Y SOIL_GRTR5 Percentage of soils in the water corridor with a pH equal or 

greater than 5.0 
Y SOIL_LESS5 Percentage of soils in the water corridor with a pH less than 5.0 
R STRM_XINGS Number of road crossings per km of stream 
C ROAD_DN  Road density (km of road per km2 of land) 
R ROAD_DN2 Road density within the water corridor (km of road per km2 of 

land) 
Y EXOTICS Weighted number of exotic fish species within the subwatershed 
C LATITUDE  Latitude measured in decimal degrees 
R LONGITUDE Longitude measured in decimal degrees 
Y ELEV_MEAN Mean elevation 
Y ELEV_MIN Minimum elevation 
Y ELEV_MAX Maximum elevation 
X BAREROCK Percentage bare rock in the subwatershed 
X BAREROCK2 Percentage bare rock in the water corridor 
Y DECIDUOUS Percentage deciduous forest in the subwatershed 
Y DECIDUOUS2 Percentage deciduous forest in the water corridor 
R EVERGREEN Percentage evergreen forest in the subwatershed 
R EVERGREEN2 Percentage evergreen forest in the water corridor 
X FALLOW Percentage fallow fields in the watershed 
X FALLOW2 Percentage fallow fields in the water corridor 
X GRASSLAND Percentage natural grasslands/herbaceous lands in the 

subwatershed 
X GRASSLAND2 Percentage natural grasslands/herbaceous lands in the water 

corridor 
Y HERB_WETLNDS Percentage herbaceous wetlands in the subwatershed 
Y HERB_WTLNDS2 Percentage herbaceous wetlands in the water corridor 
Y HIGH_RES Percentage high intensity residential lands in the subwatershed 
Y HIGH_RES2 Percentage high intensity residential lands in the water corridor 
Y INDUST_TRANS Percentage commercial/industrial/transportation in the 

subwatershed 
Y INDUST_TRANS2 Percentage commercial/industrial/transportation in the water 

corridor 
Y LOW_RES Percentage low intensity residential in the subwatershed 
Y lOW_RES2 Percentage low intensity residential in the water corridor 
R MIXED_FOREST Percentage mixed forested lands in the subwatershed 
C MIXED_FOREST2  Percentage mixed forested lands in the water corridor 
Y OPEN_WTR Percentage open water in the subwatershed 
Y OPEN_WTR2 Percentage open water in the water corridor 
Y ORCH_VINEYRD Percentage orchards/vineyards/other in the subwatershed 
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Y ORCH_VINYRD2 Percentage orchards/vineyards/other in the water corridor 
R PASTURE_HAY Percentage pasture/hay in the subwatershed 
R PASTURE_HAY2 Percentage pasture/hay in the water corridor 
C PERCENT_AG  Derived from subwatershed sum of agricultural  uses 
R PERCENT_AG2 Derived from water corridor sum of agricultural uses 
R PRCNT_HUMAN Derived from subwatershed sum of percentage human uses  
R PRCNTT_HUMAN2 Derived from water corridor sum of percentage human uses  
Y PRCNT_RES2  Derived from the sum of high and low residential use in the 

water corridor  
Y QRY_MINE_GPIT Percentage quarries/strip mines/gravel pits in the subwatershed 
Y QRY_MINE_GPIT2 Percentage quarries/strip mines/gravel pits 
Y ROW_CROPS Percentage row crops in the subwatershed 
Y ROW_CROPS2 Percentage row crops 
Y SHRUBLAND Percentage shrubland in the subwatershed 
Y SHRUBLAND2 Percentage shrubland 
Y SMALL_GRAINS Percentage small grains in the subwatershed 
Y SMALL_GRAINS2 Percentage small grains 
C TOTAL_FOREST  Derived from subwatershed sum of forested lands 
R TOTAL_FOREST2 Derived from water corridor sum of forested lands 
Y TRANSITIONAL Percentage transitional -areas of sparse vegetation in the 

subwatershed 
Y TRANSITIONAL2 Percentage transitional -areas of sparse vegetation in the water 

corridor 
Y URBAN_REC Percentage urban/recreational grasses in the subwatershed 
Y URBAN_REC2 Percentage urban/recreational grasses in the water corridor 
Y WOOD_WETLNDS Percentage wooded wetlands in the subwatershed 
Y WOOD_WTLNDS2 Percentage wooded wetlands in the water corridor 

 

Predictive models 

My main objectives were to 1) determine the relationships among the subwatershed 

and subwatershed corridor metrics and the brook trout subwatershed classifications, 2) 

use these relationships to predict the status of brook trout where the subwatershed status 

was unknown or only qualitative data was available, and 3) determine metric thresholds 

to aid land managers.  The relationships among brook trout subwatershed classifications 

and subwatershed and subwatershed water corridor level metrics were modeled using 

several techniques.  The modeling methods tested were: multivariable logistic regression, 

single variable logistic regression, discriminant analysis (linear, quadratic, and nearest 

neighbor), and classification trees.  Although all methods were tested using the total 63 
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metrics, the final reported model development was completed using combinations of the 

final six core metrics.  Each model was developed and tested to predict the brook trout 

subwatershed status of the subwatersheds classified as Unknown and Present (Table 2) 

into either a binomial or trinomial status outcome.  The binomial outcome resulted in a 

presence/absence status classification referred to as Presence (combination of Reduced 

and Intact subwatersheds) and Extirpated.  The trinomial outcome resulted in predicted 

classifications that were the same as the known status classifications of Extirpated, 

Reduced, and Intact.  Logistic regression and discriminant analysis were run using SAS, 

Version 9 (SAS Institute Inc., Cary, North Carolina, USA) and CART 5.0 (Salford 

Systems, San Diego, California, USA) was used to fit classification trees. 

Multivariable and single variable logistic regression 

Multivariable logistic regression models were created to predict the brook trout 

subwatersheds with Unknown or Present status into subwatershed classification variables 

that are part of either a binary (Presence/Extirpated) or trinomial 

(Extirpated/Reduced/Intact) response.  These classification variables were then treated as 

dependent variables in the logistic regression with the core metric values as the predictor 

variables. 

In the case of a binary response variable, logistic regression analysis models p: the 

probability that brook trout is present in terms of one or more predictor variables.  The 

model is nonlinear and has an “S” shape, increasing as a function of the variables 

(Agresti 1996).  If there are k predictor variables used to model presence, the model may 

be written in terms of the probability of presence as 
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where x1, x2, …xk corresponds to the k measured variables used in the model and 

0 1, ,..., kE E E are the associated parameters (Collett 2002).  The model can be transformed 

to a linear model using the logit transformation (Collett 2002): 

 

0 1 1logit( ) log( ) ...
1 k k

pp x x
p

E E E  � � �
�

 

 
Although the transformed model is linear, the fitting process is the not the same as 

linear regression because the dependent variable is binary or trinomial (the response is 

modeled using a binomial or multinomial distribution rather than a normal distribution).  

The model is fitted using Proc Logistic in SAS using iterative methods of maximum 

likelihood.  Transformations for individual predictors were evaluated using a Box-Cox 

transformation (Box and Cox 1964).  The optimal transformation was rounded prior to 

application.  The lack of fit of the model was evaluated using the Hosmer-Lemeshow test 

(Hosmer and Lemeshow 1980).  Residuals and influence were checked using standard 

methods. 

In the case of the trinomial response variable, we used methods of ordinal logistic 

regression that results in two S shaped curves that differ in intercept but have similar 

shape (Collett 2002).  From these curves probabilities for each category may be 

computed.  This model has three probabilities: 1 2 3, ,  and p p p .  Because these must sum to 

one, only two of the probabilities need to be modeled.  A simple model to do this is to 

assume the same relationship with the predictors but have a different intercept i.e. (Collet 

2002), 
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Other models, allowing for different intercepts and slopes were also evaluated.  The 

models were summarized using prediction ability based on the ten-fold cross-validation 

method and resubstitution method (Breiman et al. 1984).  In the ten-fold cross-validation 

method, a stratified random sample of ten percent (test sample) of the observations are 

withheld while the model is fit to the remaining 90% (learn sample).  This process is 

repeated nine times and the error rates of the ten iterations are averaged to determine the 

node probabilities. The resubstitution method merely computes the classification errors 

using the same data as a training set that was used to build the model.  The ten-fold cross-

validation method results in a more realistic estimate of how well the model will fit new 

datasets and reduces overconfidence resulting from predicting observations using the 

model developed to optimize prediction of those observations (Breiman et al. 1984).   

Multivariable logistic regression determines the importance of the predictor 

variables in the presence of other variables.  It is difficult to establish overall metric value 

thresholds because the metric relationships vary by each subwatershed.  Because of this, 

single variable logistic regression, using each of the six core metrics individually, was 

also used to predict Extirpated subwatersheds from subwatersheds where brook trout are 

present (binomial model).  Comparing the correct classification rate to the metric value 

used to predict classification aided in developing metric value thresholds.  Trinomial 

response single logistic regression models were also created for each of the core metrics.      

Discriminant analysis 

Discriminant analysis refers to a set of multivariable techniques that focus on the 

classification of an object to a group.  There are several methods under the rubric of 
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discriminant analysis including linear discriminant analysis, quadratic discriminant 

analysis, and nearest neighbor discriminant analysis (Huberty 1994).  All these methods 

can be viewed as methods based on probability models for each of the groups and 

describe different ways to estimate the probability that an object comes from a particular 

group (Rencher 2002).  The linear, quadratic, and nearest neighbor techniques were 

explored in this study.    

The simplest form of discriminant analysis is linear discriminant analysis.  This 

method uses a linear equation to predict the group that an object comes from.  The 

genesis of the method is as follows (Rencher 2002).  If each group has a multivariable 

normal distribution with equal variances (or variance-covariance matrices) then the only 

difference in the groups is in the means.  To assign an object to the group we can find the 

group that the object is most likely to have come from.  To do this with normal 

distributions we calculate the height of the normal curve given the characteristics of the 

objects.  In mathematical terms, if the density of observations with characteristics, x, is 

fi(x) for group i then the group that the object is most likely to come from is the one with 

the greatest value of fi(x).  So to classify, we can calculate this for each group and then 

assign the object.  With multivariable normal distributions, there is a simpler way 

because the decision can be written as a linear function of x.  Hence, rather than calculate 

the density, we simply calculate the linear function and make the assignment based on the 

score of the linear function.  When there are just two groups, the scores can actually be 

estimated using a regression program (Kleinbaum et al. 1988) with the response variable 

being a binary variable and the independent variables being the x variables. 
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Quadratic discriminant analysis results when the densities are multivariable 

normal with unequal covariance matrices (Rencher 2002).  In this case, the decision rule 

does not reduce to a linear function; rather it is reduced to a quadratic function. 

Nearest neighbor discriminant analysis focuses on using distance rather than 

probability for classification (Rencher 2002).  The first step in the method is to choose a 

distance measure.  Then, a test or training set is used to define the different groups.  

When a new observation is to be classified, we compute the distance from the new object 

to the other objects in the test set.  A pre-specified number of neighbors are chosen based 

on closeness to the given object.  Then one looks at the classes associated with the 

neighbors.  The object is assigned to the class that it is closest to in terms of the number 

of neighbors.  Thus if the pre-specified number of neighbors is five and of the five closest 

to a subwatershed, three are from the Intact group and two are from the Extirpated group, 

the subwatershed is assigned to the Intact group (i.e. predict the brook trout population 

status as Intact in that subwatershed). 

Multiple runs of the model were conducted, varying the number of neighbors, in 

order to optimize the correct classification.  The final number of neighbors chosen was 

11.  The distance measure used for this project was the Euclidean distance.  Both the ten-

fold cross-validation and the resubstitution methods were used to evaluate all of the 

discriminant analysis models.   

Classification trees 

Classification trees are a type of decision tree that use input variable values to 

successively split data into more homogenous groups (Breiman et al. 1984; Clark and 

Pregibon 1992).  Classification trees are similar to taxonomic keys in that they consist of 
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a dichotomous rule set that is produced through recursive partitioning.  In other words, 

the data are split into two groups based on a single predictor value, determined from the 

input variables, which produces the greatest difference in the resulting groups.  Each 

juncture, or node, is considered in isolation without any concern for how the next node 

will be split (Neville 1999).  These groups are then partitioned again based on a different 

splitting criterion and the process continues until the data can no longer be divided and 

result in a terminal node.  In the case of this project the input variables are the core metric 

values and the terminal nodes represent the brook trout subwatershed status 

classifications.  Classification trees can take the given measurements of individuals in 

known classifications and develop splitting criteria to predict the classifications of 

individuals with unknown status.  Through the development of classification trees one 

can also determine the factors which most prominently influence or predict the terminal 

nodes or classifications.  All classification tree modeling was done using CART 5.0 

modeling program (Salford Systems, San Diego, California, USA).  Both the ten-fold 

cross-validation and the resubstitution methods were used to evaluate the prediction 

errors of the classification trees.   

The algorithm that CART uses to determine the splitting criteria is based on the 

Gini index (Breiman et al. 1984).  For each node, CART determines which variable and 

variable value most greatly reduces the Gini index for the set of observations within the 

node.  The Gini index is a measure of impurity with values ranging from 0 to 1, where 0 

represents total purity (all observations in the node are in one class) and 1 equals total 

impurity (all classes are equally represented in the node).  The reduction in the Gini index 
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is measured as the impurity of a group before the split, minus the sum of the impurities of 

the two groups resulting from the split.   

Classification trees have some advantages over linear models.  First, classification 

trees accept multiple variable types such as numerical, ordinal, and interval (Neville 

1999).  Second, classification trees use surrogate variables to handle missing values 

(Breiman et al. 1984).  Third, they are not sensitive to monotonic transformations of the 

variables (Statistical Sciences 1993).  Also, classification trees notice relationships from 

the interaction of inputs, discard redundant inputs, and help determine the variable 

importance in prediction (Neville 1999).   

Four models were created using the classification trees and the core metrics: M1 

(no LATITUDE), M2, M3 (no LATITUDE), and M4.  M1 and M2 sorted the 

subwatersheds into either a Presence or Extirpated population status classification.  M3 

and M4 classified the subwatersheds as Extirpated, Reduced, or Intact (Figures 2-5).  I 

also conducted a geo-spatial analysis to map the locations of the incorrect classifications 

for each classification tree model.   

 

Results 
 
Analysis of predictive models 
 

Numerous models were developed using the core metrics and the subwatersheds 

with known status classifications as a training set.  The range of values of the core 

metrics for all the subwatersheds and for each subwatershed classification is illustrated in 

Figures 6-10.  A summary of the models’ correct classification rates is listed in Tables 4 

and 5.   
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Binomial models 
 

Classification trees and nearest neighbor discriminant analysis had the highest 

overall correct classification rates (CCR) for the binomial response models 

(Presence/Extirpated).  Classification trees had the highest CCR when LATITUDE was 

included as a variable (83% with resubstitution method) and nearest neighbor 

discriminant analysis when LATITUDE was removed from the model (80%) (Table 4).  

However, when using the cross validation method, the multivariable logistic regression 

model had the highest CCR (79%) (Table 4).  The single variable logistic regression 

models TOTAL_FOREST, DEPOSITION, and ROAD_DN had the highest CCR for 

predicting Presence subwatersheds, while PERCENT_AG, MIXED_FOREST2 and 

LATITUDE were better at predicting Extirpated subwatersheds (Table 4).  The 

TOTAL_FOREST model was the best overall single metric predictor (CCR = 76%) for 

Presence/Extirpated (Table 4).  I did not present cross validation values for the single 

variable models because their low resubstitution values were too low to consider them for 

the main prediction model. 

Trinomial models 

Classification trees had the highest CCR (72% with resubstitution; 65% with cross 

validation) of the trinomial response models (Extirpated/Reduced/Intact), followed by 

nearest neighbor discriminant analysis (70% with resubstitution; 64% with cross 

validation) (Table 5).  This ranking was consistent among the models when LATITUDE 

was removed (Table 5).  DEPOSITION had the highest CCR of the single predictor 

variables with 58%; however none of the variables’ values fell below 51% (Table 5).   
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Table 4. Correct classification rates (CCR) for the binomial response models.  An (L) 
proceeding the model name indicates that LATITUDE was included.  Resubstitution 
values presented as percentages (cross-validation in parentheses).   
 Binomial 
  Extirpated Present Overall 
Single variable logistic regression    

TOTAL_FOREST 45 90 76 
PERCENT_AG 91 41 75 

DEPOSITION 3 96 66 
MIXED_FOREST2 91 31 71 

ROAD_DN 20 94 70 
LATITUDE 89 22 68 

Multivariable logistic regression (L) 59(59) 89(89) 79(79) 
Multivariable logistic regression 56(56) 89(89) 79(79) 
Linear discriminant analysis (L) 74(74) 80(79) 78(77) 
Linear discriminant analysis 72(72) 75(75) 74(74) 
Quadratic (L) 82(82) 74(74) 77(77) 
Quadratic  69(69) 79(79) 76(76) 
Nearest neighbor (L) 88(84) 76(74) 80(77) 
Nearest neighbor  85(79) 77(74) 80(76) 
Classification trees (L) 90(83) 80(77) 83(77) 
Classification trees 80(76) 78(76) 79(76) 

 
Table 5. Correct classification rates (CCR) for the trinomial response models.  An (L) 
proceeding the model name indicates that LATITUDE was included.  Resubstitution 
values presented as percentages (cross-validation in parentheses).   

  Trinomial 
  Extirpated Reduced Intact Overall 
Single variable logistic regression     

TOTAL_FOREST 50 84 0 54 
PERCENT_AG 55 79 11 55 

DEPOSITION 4 88 34 58 
MIXED_FOREST2 48 73 19 52 

ROAD_DN 33 72 35 51 
LATITUDE 45 48 66 51 

Multivariable logistic regression (L) 64(61) 74(74) 48(46) 64(64) 
Multivariable logistic regression 62(61) 73(73) 41(41) 62(61) 
Linear discriminant analysis (L) 67(66) 63(63) 57(57) 63(63) 
Linear discriminant analysis 66(66) 53(53) 53(53) 57(57) 
Quadratic (L) 74(73) 43(43) 72(72) 60(60) 
Quadratic  60(59) 45(45) 79(78) 58(57) 
Nearest neighbor (L) 82(78) 54(47) 82(75) 70(64) 
Nearest neighbor  78(73) 54(48) 80(71) 68(61) 
Classification trees (L) 84(78) 59(53) 80(72) 72(65) 
Classification trees 76(69) 64(51) 79(72) 71(62) 
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Using logistic regression, the best single metric models had overall correct 

classification rates of 51% to 58 %.  Using the core variables in a multi-metric logistic 

regression increased the overall correct classification rate to 64%.  Although the 

multivariable logistic regression models have a higher CCR, the varying relationships of 

the metrics in the multiple variable models make determining thresholds difficult.  Single 

metric logistic regression models have a lower overall prediction rate but have the 

advantage of indicating specific land use metric thresholds to natural resource managers. 

While all model methods showed promise, classification trees was chosen as the 

prediction model for this project because: 1) it had higher overall correct classifications 

among binomial and trinomial models; 2) there was a good balance among the correct 

prediction rates of each classification category; 3) there are very few assumptions and no 

transformations needed in any of the input data; and 4) thresholds and their interactions 

are easier than the other models to interpret, display, and explain to land use managers. 

Binomial classification tree models: Presence/Extirpated 

There were four classification tree models created.  Classification tree Model 1 

(M1) used five of the core metrics (no LATITUDE) and had an overall correct 

classification rate of 79% (resubstitution method) and 76% (cross-validation method) 

with a good balance in error rates between Extirpated and Presence (Table 4). The most 

important metrics and splitting criteria for M1 are Node 1: TOTAL_FOREST (67.9%), 

Node 2: DEPOSITION (22.9 kg/ha), Node 6: ROAD_DN (1.19 km/km2), and Node 3: 

MIXED_FOREST2 (11.9%) (Figure 2).   

The M1 classification tree model is shown in Figure 2 with predictive 

probabilities for each of the terminal nodes. Classification trees work much like 
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dichotomous keys.  For example, in Figure 2, at Node 1 all 3,337 subwatersheds are split 

on TOTAL_FOREST at a splitting criterion of 67.9%. Those subwatersheds with a 

percentage of forested lands less than or equal to 67.9% (n = 1,227) go to the left branch 

to Node 2, while those subwatersheds with a percentage of forested lands greater than 

67.9% (n = 2,060) go to the right branch (Node 6). At each subsequent node the 

subwatersheds are split again. At Node 6 the splitting criterion is ROAD_DN with a 

value of 1.19 km/km2. Subwatersheds with a road density less than 1.19 km/km2 would 

follow the left branch to Terminal Node 6, while subwatersheds with road density greater 

than 1.19 km/km2 would follow the right branch to Node 7.  Subwatersheds proceed 

through the splitting criteria until they reach a terminal node where a classification is 

predicted with a given probability. For example, Terminal Node 6 contains all 

subwatersheds that have greater than 67.9 % forested lands and a road density less than 

1.19 km/km2.  A total of 886 out of 3,337 subwatersheds have these two characteristics. 

Subwatersheds with these characteristics are predicted to have a classification of 

Presence at a probability of 84.9%.  Out of the total 1,664 subwatersheds that were 

classified as either Unknown or Present, M1 predicted extirpation in 467 (28%) 

subwatersheds and presence in 1197 (72%) subwatersheds (Table 6).   

Model 2 (M2) used all six core variables and had an overall CCR of 83% 

(resubstitution method) and 79% (cross-validation method) (Table 4). M2 successfully 

predicted extirpated subwatersheds correctly 90% (resubstitution method) and 83% 

(cross-validation method) (Table 4). The most important metrics and splitting criteria for 

M2 were Node 1: TOTAL_FOREST (67.9%), Node 2: DEPOSITION (22.9 kg/ha), Node 

3: LATITUDE 37.86 decimal degrees, Node 4: LATITUDE (41.19 decimal degrees) 
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(Figure 3).  Out of the combined total 1,664 Present and Unknown subwatersheds, M2 

predicted extirpation in 380 (23%) subwatersheds and presence in 1284 (77%) 

subwatersheds (Table 6).   

A “pruned” classification tree model is shown in Figure 3 with predictive 

probabilities for each of the terminal nodes.  Pruning allows for easier display of the 

model as full classification trees can be quite large.  A pruned classification tree is a tree 

in which the terminal and lower (near the terminal) nodes have been deleted, collapsing 

the tree into fewer splits.  The result is that previously normal nodes become terminal 

nodes and the subwatersheds are sorted into less homogenous groups.  

 

 



 

Figure 2.  Complete classification tree Model 1 (M1).  Terminal nodes are indicated by red boxes.  Final classification and within node 
classification probabilities in percentages are indicated below the terminal nodes. 

 



 

 
Figure 3.  Pruned classification tree Model 2 (M2).  Terminal nodes are indicated by red boxes.  Final classification and within node 
classification probabilities in percentages are indicated below the terminal nodes.

 



33 

Table 6. Summary of predicted classifications (number of subwatersheds) of Unknown 
 Present subwatersheds for classification tree models 1-4. 

del 1: Binomial - without LATITUDE  

and

Mo

Subwatershed Classification # of Subwatersheds
Predicted 

Classification 
Unknown 386 Extirpated 
Unknown 252 Present 
Present 81 Extirpated 
Present 945 Present 

Unknown & Present 467 Extirpated 
Unknown & Present 1197 Present 

  
del 2: Binomial- with LATITUDE  

bwatershed Classification # of Subwatersheds
Predicted 

Classification 
Unknown 340 Extirpated 

 
Mo

Su

Unknown 298 Present 
Present 40 Extirpated 
Present 986 Present 

Unknown & Present 380 Extirpated 
nknown & Present 1284 Present 

  
 3: Trinomial – without LATITUDE  

atershed Classification # of Subwatersheds
Predicted 

Classification 
Unknown 326 Extipated 

U
 
Model

Subw

Unknown 248 Reduced 
Unknown 64 Intact 
Present 42 Extipated 
Present 209 Reduced 
Present 775 Intact 

nknown & Present 368 Extipated 
nknown & Present 457 Reduced 
nknown & Present 839 Intact 

  
 4: Trinomial - with LATITUDE  

atershed Classification # of Subwatersheds
Predicted 

Classification 
Unknown 364 Extipated 

U
U
U

 
Model

Subw

Unknown 198 Reduced 
Unknown 76 Intact 
Present 35 Extipated 
Present 180 Reduced 
Present 811 Intact 

nknown & Present 399 Extipated 
nknown & Present 378 Reduced 
nknown & Present 887 Intact 

 predicted subwatersheds for each model is 1664 

U
U
U

*Total
 

 



34 

 

 

T m educ

  Classification tree Model 3 (M3) used five of the c cs (no LATITUDE) 

and had an orrect classificatio ethod) and 62% 

(cros ) (Table 5). C t classification ong the three 

c esubstitution method; 6 validation method); 

Reduced (64% resubstitution method, 51% cross-validati ; and Intact (79% 

resubstitut d, 72 % cross-validation method) (Table 5). The most important 

metrics and splitting criteria for M3 ar de 1: TOTAL_ (68.1%), Node 2: 

DEPOSITION (27.9 kg/ha), Node 6: DE

P ur d classification tree model is shown in 

Figure 4 and the predicative probabilities for each of the t des is listed in Table 

7.  

Table 7.  T ode classification probabilities for Model 3 (M3).   

Term  Probability ced Probability bability 

rinomial classification tree odels: Extirpated, R ed, Intact 

ore metri

 overall c n rate of 71% (resubstitution m

s-validation method orrec  rates am

ategories were Extirpated (76% r 9% cross-

on method)

ion metho

e No FOREST 

POSITION (18.5 kg/ha), and Node 3: 

ERCENT_AG (27.1%)(Fig e 4). The M3 prune

erminal no

erminal n

inal Node Extirpated Redu Intact Pro
1 0.0 27.5 2.5 7
2 23.4 62.9 13.7 

14.9 28.6 
4 4.0 11.7  

 
6 0.9 9.1  
7 10.8 24.7 
8 10.3 17.6 2.1 
9 35.8 46.0  

10 20.2 59.9 
11 23.4 49.8 6.8 

1.2 35.8  
5.4 83.2 
8.8 47.6 3.6 

57.7 
16 21.8 43.8 34.4 
17 55.3 35.7 9.1 

3 56.4 
84.3
2.9 5 72.9 24.2

90.0
64.4 
7
18.2
19.8 
2

12 63.0
13 11.4 
14 1 3
15 30.2 12.1 
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18 26.1 55.6 18.3 
 

Out of the combined total 1,664 Present and Unknown subwatersheds, M3 

predicted the subwatershed classification to be Extirpated in 368 (22%) subwatersheds, 

Reduced in 457 (28%) and Intact in 839 (50%) subwatersheds (Table 6).  The spatial 

distribution of these predicted subwatersheds is illustrated in Figure 12.    

Classification tree Model 4 (M4) uses all six core metrics and had an overall CCR 

of 72% (resubstitution method) and 65% (cross-validation method) (Table 5).  Correct 

rates among the three categories were Extirpated (84% resubstitution method; 78 % 

cross-validation method), Reduced (59% resubstitution method, 53% cross-validation 

method), and Intact (80% resubstitution method, 72 % cross-validation method) (Table 

5). The most important metrics and splitting criteria for M4 are Node 1: LATITUDE 

(43.12 decimal degrees), Node 2: TOTAL_FOREST (66.8%), Node 18: DEPOSITION 

(14.2 kg/ha), and Node 3: LATITUDE (41.19 decimal degrees) (Figure 5). The pruned 

classification tree model is shown in Figure 5 and the predictive probabilities for each of 

the term

ut of the comb

predicted the subwatershed classification to b

Reduced in 378 (23%) and Intact in 887 (53%) subwatersheds.   

 
 
 
 
 
 
 
 
 

inal nodes are listed in Table 8.   

O ined total 1,664 Present and Unknown subwatersheds, M4 

e Extirpated in 399 (24%) subwatersheds, 
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Table 8.  Terminal node classification probabilities for Model 4 (M4).   

Terminal Node Extirpated Probability Reduced Probability Intact Probability 
1 76.6 18.0 5.3 
2 64.6 35.4 0.0 

4 71.3 27.2 1.4 

6 14.6 78.5 6.8 

17 2.5 35.5 62.0 

19 2.0 31.1 66.8 

3 12.6 70.8 16.5 

5 66.1 32.7 1.3 

7 37.0 63.0 0.0 
8 0.0 7.4 92.6 
9 55.5 14.4 30.1 

10 4.5 76.4 19.1 
11 5.8 26.8 67.5 
12 15.2 65.2 19.6 
13 59.1 34.8 6.1 
14 27.8 58.9 13.2 
15 56.8 16.6 26.5 
16 20.2 59.2 20.6 

18 0.4 3.8 95.8 

20 100.0 0.0 0.0 

 



 

 

Figure 4.  Pruned classification tree Model 3 (M3).  Terminal nodes are indicated by red boxes.  Final classification and within node 
classification probabilities in percentages are indicated below the terminal nodes. 



 

Figure 5.  Pruned classification tree Model 4 (M4).  Terminal nodes are indicated by red boxes.  Final classification and within node 
classification probabilities in percentages are indicated below the terminal nodes.
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Figure 6. Box plot and histogram distributi
subwatershed for each subwatershed classification.  Predicted subwatersheds based on
Model 3. 

on of percentage of forested land per 
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ure 7.  Box plot and histogram distribution of percentage of agriculture lands per 
watershed for each subwatershed classification. Predicted subwatersheds based on 
del 3. 
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Figure 8.  Box plot and histogram distribution of the combine NO3 and SO4 depo
per subwatershed for each subwatershed classification.  Predicted subwatersheds based 
on Model 3. 

sition 
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igure 9.  Box plot and histogram distribution of road density (km/km2) per subwatershed 
for each subwatershed classification.  Predicted subwatersheds based on Model 3.   

  
F
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Figure 10.  Box plot and histogram distribution of the percentage of mixed riparian forest 
land per subwatershed for each subwatershed classification.  Predicted subwatersheds 

ased on Model 3.   b
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Figure 11.  Box plot and histogram distribution of the percentage of mixed riparian forest 
land per subwatershed for each subwatershed classification.  Predicted subwatersheds 
based on Model 4. 
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Figure 12.  Distribution of known and predicted (Model 3) subwatershed classifications 

ithin the study area.   

 

w
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Misclassified subwatersheds 

Subwatersheds that were predicted to be Intact or Reduced but in fact were 

Extirpated using M3 were predominately (31%) found in the southern Appalachians 

(Tennessee, North Carolina, Georgia, and South Carolina) (Figure 13). 

Figure 13.  Extirpated subwatersheds incorrectly predicted as Reduced or Intact in the 
southern Appalachians based on Model 3 (M3).   
 

The distribution of subwatersheds predicted to be Extirpated but classified as 

Reduced or Intact using M3 is illustrated in Figure 14.  A high concentration of these 

misclassified subwatersheds was in Pennsylvania (45%) and New York (14%) (Figure 

14). 
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Figure 14.  Reduced and Intact subwatersheds incorrectly predicted as Extirpated based 
on Model 3 (M3).   
 

 
Discussion 

 
The classification tree models show that land use metrics at the subwatershed 

scale are effective predictors of brook trout.  I chose the M3 model for the majority of 

final reporting and mapping because it is the most useful model for biologists and land 

managers.  The binomial response models, M1 and M2, are useful for indicating the 

presence of brook trout, but do not give as much information as to the abundance or 

status of the populations.  Although M4 (with latitude) has a slightly higher overall 

correct classification rate, M3 uses only the metrics that managers can influence. 
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Understanding the current distribution and population status of a species is one of 

the key tools in the conservation of that species (Williams et al. 1993; Warren et al. 

1997).  Although the Hudy et al. (2006) assessment produced a comprehensive large 

scale appraisal of the distribution of brook trout within the eastern United States, 33% of 

the subwatersheds within the study area did not have enough information to indicate the 

percentage of habitat within the subwatershed that supported self-sustaining brook trout 

populations.  Filling in those information gaps by predicting the subwatershed status 

using core subwatershed metrics will be of use to natural resource managers by providing 

a baseline to help set goals and priorities and measure effectiveness of conservation and 

restoration efforts.  By combining known and predicted status of brook trout 

subwatersheds in the study area, a complete picture is now available to land use 

managers.  My analysis shows that only 32% of the subwatersheds are Intact for self-

sustaining brook trout populations.  The remaining 68% are either Reduced (39%) or 

Extirpated (29%).  Although the brook trout is not threatened throughout its range, 

regional declines and local extinctions have occurred.  While I was generally satisfied 

with the correct classification rates of the various classification tree models, as with any 

model, they need to be validated to confirm the accuracy of the predicted status.   

In addition, to further understand the model, I conducted a geo-spatial analysis of 

the locations of the incorrect classifications (Figures 13 and 14). The southern 

Appalachians, which as a region only contains 10% of the subwatersheds in the study 

ntact or Reduced but in fact were Extirpated (Figure 13).  The southern Appalachians is 

area, contained a high percentage (31%) of the subwatersheds that were predicted to be 

I
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an area where exotic rainbow trout have displaced brook trout.  Many of these 

subwat ut (i.e. 

 

ut into restored 

subwatersheds have led to the establishment of rainbow trout (King 1937; King 1939; 

Lennon 1967; Kelly et al. 1980).  Exotics were indicated as one of the top perturbations 

to brook trout by biologists and managers in the population assessment completed by 

Hudy et al. (2006).  However, exotics were not one of the core metrics used in the 

predictive models.  The exotic metric that I developed was derived from professional 

opinions of perceived subwatershed perturbations because consistent smaller scale 

(stream segment) data for exotic fishes are highly variable among states, making 

development of a quantitative exotic metric impossible at this time.  The exotic metric 

was not responsive to the subwatershed classifications probably because of the complex 

interaction of natural and manmade barriers, stocking history, and the variability by 

experts in identifying exotics as a perturbation at the subwatershed level.  I believe exotic 

fishes are an important variable for brook trout status but the impacts may not be 

 this study.  A more localized predictive model for the southern Appalachians was not 

attempted because of the small numbers of subwatersheds that remain Intact (only six 

below the state of Virginia).  Development of an accurate more quantifiable metric for 

exotics may improve future prediction models.  

Subwatersheds predicted to be Extirpated but classified as Reduced or Intact were 

wider spread geo-spatially (Figure 14).  The majority of these misclassified 

ersheds currently have core metric values that would predict Intact brook tro

high percentage of forested lands, low percentage of agriculture, and low deposition).

However, past land use practices and subsequent stocking of rainbow tro

adequately addressed at the subwatershed level over a large geographic area as was done 

in
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subwatersheds were located in Pennsylvania (45%) and New York (14%) (Figure 14).  

The model predicted these subwatershed as Extirpated because of the high road density 

associated with increasing urbanization (or suburbanization) of eastern Pennsylvania and 

the high acidic deposition.  In general these misclassified subwatersheds had only one or 

two isolated brook trout populations and represent some of the subwatersheds most 

vulnerable to extirpations.   

I believe the larger watershed sizes used for New York made the probabilities of 

the extirpation of brook trout in New York watersheds harder.  When the smaller 6th level 

subwatersheds become available for New York I believe the model will be slightly 

improved for the correct classification rates of Extirpated subwatersheds. 

Most of the misclassified subwatersheds were from the Reduced classification 

group.  This suggests that the models are better at separating the two extremes of the 

s bring up the caveat that these models are 

asically taking a snapshot in time.  They use current subwatershed characteristics even 

ough past land use practices may have cau  habitats 

and even whole subwatersheds.  Even r 

classification status.       

The misclassified subwatershed

b

th sed brook trout extirpations from

 if past land use practices have been remedied, fo

example reforestation of agricultural and clear cut areas, it may take greater than 50 years 

for the stream habitat to recover to pre-impact conditions (Harding et al. 1998).  

Biologists, as part of the Hudy et al. (2006) assessment, indicated historical land use such 

as agriculture and logging as high perturbations to brook trout populations.  However, 

much like the exotic species metric, the variability and geographic inconsistency of 

biologists’ responses does not make for a robust metric.   
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 he models I developed are also useful for developing metric thresholds, metric 

values 

ut 

 

d values 

ld be 

  

 

ults in 

the opt

deposition 

 

T

at which a subwatershed switches from one status classification to another, to be 

used by biologists and land managers as warning flags or impact indicators.  For 

example, 68% forested land appears to be an important factor in determining brook tro

subwatershed status.  A value of 68% forested lands was the first splitting criterion for 

three of the four classification tree models.  In M3, only 6% of the Intact subwatersheds 

had a TOTAL_FOREST value of less than 68% (Figures 6).  Although the value that 

resulted in the best overall correct classification rate of the TOTAL_FOREST single 

variable binomial response model was 52% forested land, the value that produced the 

best CCR for both classifications without sacrificing much in the overall CCR (74%) was

65% forested land.  I suggest that land managers should consider subwatershe

below 65-70% forested lands as a tipping point for brook trout status.    

 Similar thresholds can be determined for the other metrics by maximizing the 

CCR among the classifications for the single variable logistic regression models and 

examining the histograms and classification tree splitting criteria.  However, it shou

noted that these thresholds, including the percentage of forested lands, are not absolute.

Due to the interactions with the other metrics, the impact of the metric at these thresholds

can either be compounded or mitigated.  For example, the deposition value that res

imized CCR for the single variable logistic regression model is 33 kg/ha.  

However in M3 (Figure 4) it is possible to get Extirpated subwatersheds with a 

value as low as 28 kg/ha if the percentage of forested land is below 68%.  Therefore, I 

recommend that managers be aware when subwatersheds approach a combined NO3 and

SO4 deposition value of greater than 24 kg/ha (Figure 8).   
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Managers should be concerned when the percentage of agricultural land

subwatershed is in the 12-19% range or higher.   Only 17% of the Intact subwatersheds 

have a PERCENT_AG value greater than 19% and 74% of the Extirpated subwatershe

have a PERCENT_AG value greater than 12% (Figure 7).  Another subwatershed 

threshold range that land managers should be aware of is a road density value greater 

than 1.8-2.0 km/km

 in the 

ds 

a 

cant 

d 

r 

vel 

re above 41.0 degrees latitude, and in 

M4, the

as not 

2.    The road density value that optimized the CCR for predicting 

Extirpated from Presence was 2.0 km/km2.  Although 47% of the subwatersheds have 

road density value greater than or equal to 1.8 km/km2, Intact subwatersheds only 

constitute 8% (17% of the Intacts) of that group (Figure 9).   

 The remaining two core metrics do not produce thresholds that are as signifi

to brook trout conservation efforts.  The percentage of riparian mixed forested lan

metric should not be confused with the percentage of riparian forested land.  The 

MIXED_FOREST2 metric measures the percentage of land within the water corridor 

where both deciduous and evergreen trees are present but neither type represents ove

75% of the cover.  The metric measuring percentage of forested land in the water corridor 

was removed in the screening process due to redundancy with the subwatershed le

percentage forested land metric.  Mixed forested land in the water corridor helps to 

separate classifications in the models, but the biological reasons for this is unknown, 

reducing its utility as a threshold. 

 Latitude is another metric that is not as helpful to land managers.  A high 

percentage (77%) of the Intact subwatersheds we

 first node had a spitting criterion of 43.122 degrees latitude (Figure 11).  

Although it increases the correct classification rates of the models, latitude w

 



53 

included in some of the models because it is not a metric that land managers can control

Separate models were not presented for each region (i.e. New England, Mid-Atlantic 

Highlands, and southern Appalachians) because each region did not contain adequate 

sample sizes of the subwatershed classifications to produce reliable models. 

Although at the subwatershed level the core metrics effectively predicted the

classification status; these m

.  

 

etrics are not the only influences on brook trout.  Simply 

becaus

nt 

Agency -

e, 

 and riparian vegetation (Rashleigh et al.  2005).  Because of the 

large g to the 

 

rmation 

tic 

mportant next step would be to 

e a metric did not make it through the screening process does not mean that it is 

not a biologically significant factor for brook trout populations.  Also, some metrics may 

have greater influence on brook trout populations and are better predictors at differe

scales (Kocovsky and Carline 2006).  For example, the U. S. Environmental Protection 

 was able to predict brook trout presence/absence in stream segments in the Mid

Atlantic Highlands with a CCR of 79% using the metrics: depth, temperature, substrat

percentage riffles, cover,

eographic area of this study, I used larger scale (subwatershed) metrics due 

inconsistency of smaller scale (stream segment) data.   

 The objective of this study was to determine if models using land use metrics at

the subwatershed scale could be used to predict brook trout subwatershed status and 

develop metric thresholds that could be used by land managers for conservation.  The 

land use models were successful in predicting brook trout status and filled in info

gaps by classifying the Unknown and Present subwatersheds.  The models also aided in 

indicating useful thresholds for forested lands, agricultural lands, acid deposition, and 

road density.  I believe the models could be improved by acquiring a quantitative exo

metric and 6th level watersheds for New York and that an i
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v e the model with stream inventories of a sample of the predicted subwatersheds.  

Overall, the brook trout subwatershed status distribution and threshold metric values can

be useful for risk assessments and  for prioritizing conservation efforts; whether o

conservation strategy is to protect the “best of the best” or rehabilitate the worst (Frissell 

1993). 
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