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Patch Metrics: A cost effective method for short and long term monitoring of Chesapeake 

Bay wild brook trout populations? 
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The wild brook trout resource in the Chesapeake Bay has been significantly reduced over 

the last 150 years and faces ongoing and future threats from climate change, land use changes, 

invasive species and loss of genetic integrity (Hudy et al. 2008). Monitoring both short and long 

term trends on individual brook trout (Salvelinus fontinalis) populations and the resource as a 

whole are important needs of managers.  

Past assessments on the 1,443 subwatersheds in the Chesapeake Bay found that 226 had 

healthy brook trout (intact); 542 had reduced populations and 290 were extirpated (Hudy et al. 

2008). However, the subwatershed scale assessment was not fine scale enough to efficiently 

monitor trends on the ground of interest to many mangers. Standard population estimates using 

mark-recapture and depletion removal estimates are also not viable for large scale monitoring 

because of expense, inability to detect trend (i.e. large coefficient in variation), and problems 

expanding the sample to the entire population. However, fine scale occupancy data (at the 

catchment level) exist for the majority of the brook trout resource in the Chesapeake Bay. 

Currently (not counting New York, not completed yet), there are 3,003 catchments containing 

allopatric brook trout populations; 1,716 catchments containing sympatric populations (with 

brown or rainbow trout); and 1,966 catchments containing only exotic trout species. We used this 

fine scale catchment data to identify unique “patches” of brook trout. We define a “patch” as a 

group of contiguous catchments occupied by wild brook trout (Figure 1). Patches are not 

connected physically (separated by a dam, unoccupied warm water habitat, downstream invasive 

species, etc) and are generally assumed to be genetically isolated. In the Chesapeake Bay there 

are 868 patches of brook trout habitat with an average patch size of 2,800 ha. 

Recent developments have made genetic sampling a cost effective surrogate for 

population estimates (Tallmon et al. 2010). Genetic monitoring is used to quantify temporal 

changes in population genetic metrics, as opposed to a snapshot assessment of population genetic 

characteristic at a single point in time (Schwartz et al. 2007). Snapshots of genetic diversity 
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themselves can be highly useful. Genetic diversity within a patch provides information about 

past population size because larger populations retain more genetic diversity.  Within-patch 

genetic diversity also provides information about resilience to future environmental change 

because populations with greater genetic diversity are more likely to be able to adapt to future 

environmental change.  

Added benefit from genetic sampling comes from samples collected from the same 

population at different points in time (genetic monitoring). We recommend two genetic 

monitoring metrics. First, multiple estimates of the amount of genetic diversity within a patch 

can be used to evaluate changes in relative abundance. This metric is sensitive to relative 

changes in population size but does not quantify it. Second, estimates of Nb (defined as the 

number of individual brook trout (regardless of age) contributing to a year class; Whiteley et al. 

2012) serve as a surrogate for estimates of census population size (N) and can be used to directly 

test for changes in population size (Tallmon et al 2010). Increasing trends in Nb are generally a 

positive response from improved habitat or increasing populations. Decreasing trends in Nb 

suggest loss of habitat and decreasing populations. Nb is related to effective population size (Ne), 

however Ne is harder to accurately calculate for iteroparous species such as brook trout because 

of the lack of detailed life history information. Furthermore, Nb is a more intuitive measure as it 

directly relates to annual recruitment. While the ratio of Nb/N is considered by most a good 

indicator of resilience and risk it is hard to get reliable estimates of N and relatively easy to get 

reliable estimates of Nb. Cost-benefit suggests that Nb alone can be a very valuable surrogate for 

risk. In a pilot study in Virginia, we found that the number of breeders (Nb) was often very low 

(less than 100) indicating that many of the existing small patches may be at risk. Monitoring Nb 

at five-year intervals has the potential to be a more useful and less expensive method than 

monitoring population levels (N).  

Monitoring changes in patch metrics (number, size, genetic diversity, and Nb) in a 

monitoring design combining fixed annual “sentinel” patches and a rotating panel design for 

other patches has potential to be a cost effective tool for managers to detect trends in wild brook 

trout populations. 
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Figure 1. Nine contiguous catchments containing brook trout are combined into one “patch” of 

reproducing brook trout habitat. Habitat below pour point does not contain brook trout. Recommended 

patch metrics for large scale monitoring include: number of patches with allopatric populations (brook 

trout only), number of patches with sympatric populations (brook trout with rainbow and/or brown trout), 

average size of patches, number of patches increasing in size (connectivity), number of patches 

decreasing in size, number of patches with decreasing or stable genetic diversity, and number of patches 

with increasing, decreasing or stable number of effective breeders (Nb). 
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Proposed Monitoring Design and Methods 

 

1. Use cluster analysis to subsample the existing 868 “patches” of brook trout 

a. Develop a panel design where “x” patches are sampled every year (sentinel 

samples) and others are sampled every 5 years. Sentinel samples capture year to 

year and fast changes while the once every five year samples captures long term 

trends.  For example 250 sites are selected by cluster analysis for monitoring 

(cluster based on patch size, elevation, climate vulnerability, eco-region, invasive 

species, regional interest, etc). A total of 25 of the 250 sites are designated as 

sentinel sites and are sampled every year. An additional 45 of the remaining sites 

are sampled every year on a rotating panel so each site is visited once every 5 

years. This equals 70 sites monitored Chesapeake Bay wide  each year.  

2.   Monitor individual brook trout populations and the Chesapeake Bay’s brook trout 

resource by several “patch” or population metrics. These metrics (a-e) can be calculated 

using standard electrofishing occupancy sampling already being used by the staff. Metric (f) 

would require taking fin clips from young of the year brook trout collected during 

electrofishing samples using methods in Whiteley et al. 2012. Briefly, we recommend 

sampling 75 young-of-the-year individuals from three equally-spaced sampling starting 

locations in the patch. 

a. Number of patches 

b. Number of patches with increasing size/connectivity (i.e. additional 

downstream/upstream catchments occupied by reproducing brook trout) 

c. Number of patches decreasing in size (loss of occupancy of downstream/upstream 

catchments 

d. Average patch size of the entire resource 

e. Number of patches with allopatric or sympatric (with rainbow or brown trout) 

populations 

f. Genetic diversity contained within patches.  This metric is defined as either 

heterozygosity or allelic diversity (number of alternate copies of a given gene).   

g. The effective number of individual brook trout (regardless of age) contributing to 

a year class or cohort. This metric is defined as Nb or the effective number of 

breeders. The effective number of breeders may be lower than the actual number 

of breeders (parents) for a given cohort if family sizes resulting from successful 

breeders are highly variable. Nb is related to effective population size (Ne), 

however Ne is harder to accurately calculate for iteroparous species such as brook 

trout because of the lack of detailed life history information. Furthermore, Nb is a 

more intuitive measure as it directly relates to annual recruitment. Genetic 

processing (to obtain metrics described in f. and g.) would cost between $750 and 

$1,500 per patch or between $52,500 and $105,000  per year using the panel 

numbers described above. 

3. Standard quantifiable population estimates for brook trout such as mark recapture and 

depletion estimations on representative reach samples have little utility or statistical 

power to detect population changes because of the high variability in brook trout 

populations. The coefficient of variation (CV) in Virginia (long term studies on Fridley 
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Gap and Staunton River) exceeds 50% on  adult brook trout and 121% on young of the 

year complicating trend analysis. 

4. Nb estimates appear to have several advantages for statewide monitoring.  

h. The estimate represents the entire “patch” or population and not just the 

representative reach. 

i. Nb values for a patch are always less than N (typically 10%-50%), and thus 

require fewer samples for accurate estimation than estimates of N using depletion 

or mark-recapture estimates (Tallmon et al, 2010) making them better suited for 

determining trends for numerous sites. 

j. Nb will provide a reliable ‘at risk’ evaluation that integrates year-to-year variation 

in N  

k. Bonus information from genetic data – genetic diversity within a patch itself as an 

indication of past population size and population resilience to future 

environmental change, population structure, some information on sibship, 

archiving data for future genomics analyses 
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