-
Restoration of Riverine Process and Habitat Suitability, Narraguagus River, Beddington, ME
-
Project added wood and boulder structures to a 0.4-mile reach of the mainstem Narraguagus River, ME, and constructed off channel habitat features.
Located in
Projects
/
2022 Projects
-
Can brook trout survive climate change in large rivers? If it rains - Merriam et al. 2017
-
Brook trout habitat vulnerability was assessed within an Appalachian watershed.
•
Increased discharge largely offset effects of increased air temperature.
•
No consistent loss of suitable brook trout habitat by end of 21st century
•
However, periods of low flow resulted in a loss of habitat at the network-scale.
•
Persistence of refugia below tributaries should enable metapopulation persistence.
Located in
Science and Data
/
Brook Trout Related Publications
-
SENSITIVITY AND VULNERABILITY OF BROOK TROUT POPULATIONS TO CLIMATE CHANGE
-
We directly measured paired air and
water temperatures in watersheds (N = 77) containing reproducing populations of brook trout in
Virginia. We found that paired air and water temperature relationships are highly variable among
patches but are a useful dataset to classify sensitivity and vulnerability of existing brook trout
patches. We developed a classification system using sensitivity and vulnerability metrics that
classified sampled brook trout habitats into four categories (High Sensitivity- High Vulnerability
(51.9%); High Sensitivity-Low Vulnerability (10.4%); Low Sensitivity-High Vulnerability (7.8%);
Low Sensitivity-Low Vulnerability (29.9%). Our direct measurement approach identified potential
refugia for brook trout at lower elevations and with higher air temperatures than previous larger
scale modeling efforts.
Located in
Science and Data
/
Brook Trout Related Publications
-
Conservation planning at the intersection of landscape and climate change: brook trout in the Chesapeake Bay watershed
-
We developed a multi-scale conservation planning framework for brook trout (Salvelinus fontinalis) within the Chesapeake Bay watershed that incorporates both land use and climate stressors. Our specific objectives were to (1) construct a continuous spatial model of brook trout distribution and habitat quality at the stream reach scale; (2) characterize brook trout vulnerability to climate change under a range of future climate scenarios; and (3) identify multi-scale restoration and protection priorities for brook trout across the Chesapeake Bay watershed. Boosted regression tree analysis predicted brook trout occurrence at the stream reach scale with a high degree of accuracy (CV AUC = 0.92) as a function of both natural (e.g., water temperature and precipitation) and anthropogenic (e.g., agriculture and urban development) landscape and climatic attributes. Current land use activities result in a predicted loss of occurrence in over 11,000 stream segments (40% of suitable habitat) and account for over 15,000 km (45% of current value) of lost functional brook trout fishery value (i.e., length-weighted occurrence probability) in the Chesapeake Bay watershed. Climate change (increased ambient temperatures and altered precipitation) is projected to result in a loss of occurrence in at least 3000 additional segments (19% of current value) and at least 3000 km of functional fishery value (9% of current value) by 2062. Model outcomes were used to identify low- and high-quality stream segments within relatively intact and degraded sub-watersheds as restoration and protection priorities, respectively, and conservation priorities were targeted in watersheds with high projected resilience to climate change. Our results suggest that traditional restoration activities, such as habitat enhancement, riparian management, and barrier removal, may be able to recover a substantial amount of brook trout habitat lost to historic landscape change. However, restoration efforts must be designed within the context of expected impacts from climate change or those efforts may not produce long-term benefits to brook trout in this region.
Located in
Science and Data
/
Brook Trout Related Publications
-
Climate change influence on brook trout populations in the Central Appalachians - Andrew et al. 2022
-
We used a 18-year brook trout (Salvelinus fontinalis) data set with samples across a ~4800 km2 spatial area in the Central Appalachian Mountains, combined with PRISM climate data at the HUC-12 subwatershed level to investigate temporal trends of each. his work provides long-term evidence to help understand the dynamics of these sentinel headwater fish populations as they experience a changing climate.
Located in
Science and Data
/
Brook Trout Related Publications
-
Brook Trout Climate Resilience Research
-
Research on climate change relevant to brook trout
Located in
Science and Data