Skip to content. | Skip to navigation

Sections
Personal tools
You are here: Home / Science and Data / Brook Trout Related Publications / Population regulation of brook trout (Salvelinus fontinalis) in Hunt Creek, Michigan: a 50-year study

Population regulation of brook trout (Salvelinus fontinalis) in Hunt Creek, Michigan: a 50-year study

1. Fisheries models generally are based on the concept that strong density dependence exists in fish populations. Nonetheless, there are few examples of long-term density dependence in fish populations. 2. Using an information theoretical approach (AIC) with regression analyses, we examined the explanatory power of density dependence, flow and water temperature on the per capita rate of change and growth (annual mean total length) for the whole population, adults, 1+ and young-of-the-year (YOY) brook trout (Salvelinus fontinalis) in Hunt Creek, Michigan, USA, between 1951 and 2001. This time series represents one of the longest quantitative population data sets for fishes. 3. Our analysis included four data sets: (i) Pooled (1951–2001), (ii) Fished (1951–65), (iii) Unfished (1966–2001) and (iv) Temperature (1982–2001). 4. Principle component analyses of winter flow data identified a gradient between years with high mean daily winter flows, high daily maximum and minimum flows and frequent high flow events, and years with an opposite set of flow characteristics. Flows were lower during the Fished Period than during the Unfished Period. Winter temperature analyses elucidated a gradient between warm mean, warm minimum and maximum daily stream temperatures and a high number of minimum daily temperatures >6.1 C, and years with the opposite characteristics. Summer temperature analyses contrasted years with warm summer stream temperatures vs years with cool summer stream temperatures. 5. Both YOY and adult densities varied several-fold during the study. Regression analysis did not detect a significant linear or nonlinear stock–recruitment relationship. AIC analysis indicated that density dependence was present in 15 of 16 cases (four population segments · four data sets) for both per capita rate of increase (wi values 0.46–1.00) and growth data (wi values 0.28–0.99). The almost ubiquitous presence of density dependence in both population and growth data is concordant with results from other trout populations and other studies in Michigan.

PDF document icon Brook Trout Population Regulation_2012.pdf — PDF document, 480 kB (492327 bytes)

Document Actions